COSMIC VARIANCE IN THE NANOHERTZ GRAVITATIONAL WAVE BACKGROUND

Elinore Roebber

with Gilbert Holder, Daniel Holz, and Michael Warren

arXiv: 1508.07336 (revised version out soon)

GWs FROM SMBH BINARIES

- ➤ Supermassive black holes (M > 10⁶ M_☉) live at the centers of most galaxies.
- When galaxies merge,
 SMBHs may form binaries.
- If binaries become close enough («1 pc) they will decay over millions of years by gravitational wave emission.
- Signal should be detectable
 by pulsar timing arrays.

PULSAR TIMING ARRAYS

- Use precise timing of millisecond pulsars across the sky to measure gravitational waves passing the Earth.
- Sensitive to frequencies of order 1 to 100 nHz—times of years to decades.
- ▶ Primary expected signal:
 stochastic, isotropic
 background due to binary
 SMBHs at $z \leq 2$.
- Stringent upper limits
 starting to rule out models

THE nHz STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

Arzoumanian et al. 2015

- Incoherent sum over large
 number of sources
- Almost no evolution on human timescales
- Canonical form: isotropic,
 power law spectrum
- Important unknowns:
 - Formation rate of SMBH binaries (sets amplitude)
 - Environmental coupling (could change shape)

A NUMERICAL CALCULATION

- Signal is from high redshift, massive sources, so we need large number statistics
- Use large dark matter simulations:
 - Multidark, Dark Sky
 - Box size: $(1 \text{ Gpc/h})^3$
 - Cosmology: WMAP5, Planck
- Complementary to
 Millenium Simulation,
 empirical calculations

FROM HALOS TO GALAXIES

- From the dark matter simulations, we get halo merger trees:
 - List of dark matter halos with mass at snapshots in time
 - Halo evolutionary history
- We use stellar mass-halo mass scaling relations to assign galaxies of a given stellar mass to halos
- Assign galaxies to be either star-forming or quiescent

FROM HALOS TO GALAXIES

- From the dark matter simulations, we get halo merger trees:
 - List of dark matter halos with mass at snapshots in time
 - Halo evolutionary history
- We use stellar mass-halo mass scaling relations to
 assign galaxies of a given stellar mass to halos
- Assign galaxies to be either star-forming or quiescent

Behroozi et al. 2013

FROM HALOS TO GALAXIES

- From the dark matter simulations, we get halo merger trees:
 - List of dark matter halos with mass at snapshots in time
 - Halo evolutionary history
- We use stellar mass-halo mass scaling relations to assign galaxies of a given stellar mass
- Assign galaxies to be either star-forming or quiescent

Moustakas et al. 2013

FROM GALAXIES TO BHS

- Calculate galaxy bulge mass according to stellar mass, population type
- Use BH-bulge mass scaling relations to populate galaxies with black holes
- Assume binaries form
 when the host halos merge
- Final result: distribution of binary black holes formed in each redshift interval

FROM GALAXIES TO BHS

- Calculate galaxy bulge mass according to stellar mass, population type
- Use BH-bulge mass scaling relations to populate galaxies with black holes
- Assume binaries form
 when the host halos merge
- Final result: distribution of
 binary black holes
 formed in each redshift
 interval

CALCULATING THE GWB

- Previous steps give us a
 probability distribution of binaries in mass, redshift
- Use Monte Carlo selection
 to simulate population of
 observed sources for many
 realizations of the universe

► Assume:

- Keplerian circular binaries,
- no environmental effects,
- no stalling

AMPLITUDE OF THE GWB

- ► Ensemble averaging gives the canonical power law spectrum ($A_{1yr} \approx 6 \times 10^{-16}$)
- Varying astrophysical models gives a factor of 2 uncertainty in the amplitude
- Range is constrained by recent PTA upper limits

'COSMIC' VARIANCE VS ASTROPHYSICAL UNCERTAINTY

CONCLUSIONS

- Used large dark matter simulations to make numerical predictions for the stochastic gravitational wave background
- Amplitude similar to recent empirical approaches, range constrained by PTA upper limits
- ► Two important forms of variance in the spectrum:
 - Astrophysical uncertainty: in scaling relations merger rates, etc; produces systematic offset in the amplitude, frequency independent
 - 'Cosmic variance': result of Poisson noise in SMBHB mass function, frequency dependent—dominates at high frequencies
- Relation between this cosmic variance and anisotropy?
- ► Effect of the cosmic variance on spectra with a turnover?