

Constraining the energy scale of cosmic strings with PTAs

Sotiris Sanidas

Anton Pannekoek Institute for Astronomy, University of Amsterdam

17th December 2015

Outline

• A brief introduction to cosmic strings

• Modelling of the cosmic string SGWB

Sanidas, Battye, Stappers, 2012, Phys. Rev. D, 85, 122003 Sanidas, Battye, Stappers, 2013, Ap.J., 764, 108

Updated constraints from the EPTA + NANOGrav

Lentati et al., 2015, MNRAS, 453, 2576 Arzoumanian et al., 2015, arXiv:1508.03024

Cosmic strings

Cosmic strings: 1-dimensional topological defects

- "Field Theory objects", created during phase transitions in the early Universe (Kibble mechanism - Spontaneous Symmetry Breaking)
 - \rightarrow Generic in all supersymmetric hybrid inflation scenarios

String theory counterparts as well - cosmic (D- and F-) superstrings

 \rightarrow Generic in brane inflation scenarios

For GUT scale cosmic strings

- i. formation: $\sim 10^{-35} \sec 10^{-35}$
- ii. linear energy density: $\sim 10^{22} \text{ gr/cm}$
- iii. width: $\sim 10^{-30}$ m
- iv. velocity: relativistic
- v. Length: any

Why do we look for them?

The most characteristic quantity is their linear energy density μ (or tension)

 $G\mu/c^2$

 They provide a *unique* "laboratory" for High Energy Physics in the Early Universe

Cosmic Strings

Cosmic superstrings

1) Energy scale of the phase transition

Fundamental string coupling
 Compactification/Warping scales

All these quantities are *directly* related to $G\mu/c^2$

Cosmic strings a relics of the Early Universe that might still exist and evolve today

 \rightarrow Key cosmological source for PTAs and eLISA

Cosmic String Network Evolution

- A cosmic string network consists of:
- 1) Infinite cosmic strings
- 2) Cosmic string loops

The cosmic string network evolution is *scale-invariant* in the radiation and matter eras.

Cosmic String Network Evolution

Scaling evolution: Requires an energy loss mechanism to attain. \rightarrow loop creation through (self)intercommutation with probability p

Loops once formed, decay (mainly) through GW emission and create a SGWB

Signatures of cosmic strings

CMB-based results inherently more robust than GW-based ones

Can GW-based results compete CMB ones?

Computation of the cosmic string SGWB

Two main difficulties

- Loop number density
 - 1) Analytic approaches (Damour-Vilenkin, Polchinski-Rocha 2007, Lorenz et al. 2010)
 - 2) Evolution simulations (Vilenkin et al. 2006, Ringeval et al 2007,
 - Blanco-Pillado et al 2011,2014, Hindmarsh et al 2009)
- Dominant GW emission mechanism
 - 1) Kinks (O'Callaghan-Gregory 2010)
 - 2) Cusps (Damour-Vilenkin 2001, Siemens et al. 2007)
 - 3) Generic investigations (Caldwell-Allen 1992, DePies-Hogan 2007)
- Common the results to disagree quantitatively and qualitatively.

In SGWB investigations particularly:

- 1) many approximations used in the computation of the loop number density.
- 2) GW emission is mainly credited to cusps.

With total lack of any observational facts, our approach is to be

conservative and generic

$$\ell(t, t_{\rm b}) = f_{\rm r} \alpha d_{\rm H}(t_{\rm b}) - \frac{\Gamma G \mu}{c} (t - t_{\rm b})$$

 $dN_{\text{loop,css}}$ dt

From these we can compute the *loop number density* $n(\ell, t)$ 28th Texas Symposium, Geneva, 2015

GW emission mechanism

Generic GW emission modelling: a loop that oscillates relativistically and emits GWs

GW emission harmonics (modes): $f_n = rac{2nc}{\ell}, n=1,\ldots,\infty$

 \rightarrow High emission modes cut-off imposed, n_* (gravitational backreaction)

GW power emission:
$$\frac{dE_{\rm gw,loop}}{dt} = P_n G \mu^2 c$$
, $P_n = \Gamma n^{-q} / \sum_{m=1}^{\infty} m^{-q}$

ightarrow spectral index q depending on the emission mechanism (cusps or kinks)

$$\Omega_{\rm gw}(f) = \frac{2G\mu^2 c^3}{\rho_{\rm crit} a^5(t_0) f} \sum_{j=1}^{n_*} j P_j \int_{t_{\rm f}}^{t_0} a^5(t') n_j(f,t') dt'$$

Corrections due to massive particle annihilation

The model parameters

The main parameters that govern the GW spectrum are:

• The cosmic string tension, $G\mu$: $G\mu = 10^{-6} - 10^{-20}$ (?)

The birth scale of loops, α : loop size $0.1 d_H(t_0)$ -string width

The intercommutation probability, p : $p = 1 - 10^{-3}$

p=1 (cosmic strings), $p=1-10^{-3}$ (cosmic superstrings) Also unknown is how it affects the infinite string/loop population: $\rho_{\infty} \propto p^{-1 \, {\rm or} \, -0.6}$

The dominant GW emission mechanism: cusps or kinks?

- 1) Spectral index, q : q = 4/3 (cusps) or q = 2 (kinks)
- 2) Emission modes cut-off, n_* : $n_* = 1 \rightarrow \infty$

Reducing the parameter space

 \rightarrow Possible observed networks are limited by a low-frequency cut-off. The minimum frequency at which a network can emit is defined by the largest loops present

$$f pprox rac{2n}{lpha d_{
m H}(t_0)}, \quad lpha_{
m min.} pprox rac{2}{f d_{
m H}(t_0)}$$

► PTAs:
$$\alpha_{\min} \approx 10^{-9}$$

► eLISA: $\alpha_{\min} \approx 10^{-16}$
► LIGO: $\alpha = \approx 10^{-20}$

 \rightarrow The high-emission mode cut-off saturates much below infinity. Insignificant changes in the GW spectrum for:

- $n_* > 10^4$ in the cusp dominated emission
- $n_* > 10^2$ in the kink dominated emission

ANTON PANNEKOEK

Exclusion curves

- Exclusion curves: Networks which comply with the SGWB limit
- Constraints utilising amplitude+slope information

Exclusion curves

Only $n_* = 1$ and $n_* = 10^4, q = 4/3$ needed for the upper limits on $G\mu/c^2$

EPTA 2015 limit on $G\mu/c^2$ (p=1)

ANTON PANNEKOER

NANOGrav 2015 limit on $G\mu/c^2$ (p=1)

NANOGrav 2015 upper limit

$G\mu/c^2 < 3.3 \times 10^{-8}$

Limit based on Blanco-Pillado 2014 $n(\ell,t)$

$$G\mu/c^2 < 1.3 \times 10^{-10}$$

Model	Scenario ii (varying spectral index, varying noise)	
Scaling law	k=0.6	k=1
$p = 10^{-1}$ $p = 10^{-2}$ $p = 10^{-3}$	$\begin{array}{c} 2.2 \times 10^{-8} \\ 7.3 \times 10^{-9} \\ 2.3 \times 10^{-9} \end{array}$	$\begin{array}{c} 1.1 \times 10^{-8} \\ 1.6 \times 10^{-9} \\ 2.8 \times 10^{-10} \end{array}$
Model	Scenario iii (varying spectral index, additional common noise)	
Scaling law	k=0.6	k=1
$p = 10^{-1}$ $p = 10^{-2}$ $p = 10^{-3}$	$\begin{array}{c} 2.4 \times 10^{-8} \\ 6.9 \times 10^{-9} \\ 2.1 \times 10^{-9} \end{array}$	$\begin{array}{c} 1.0 \times 10^{-8} \\ 1.5 \times 10^{-9} \\ 2.2 \times 10^{-10} \end{array}$

ANTON PANNEKOEK

Conclusions

We provide a generic framework to describe the GW spectrum of cosmic strings based on the one-scale model.

- easy to modify and expand
- provides flexibility in marginalising its main uncertainties

2015 tension upper limits from the EPTA and NANOGrav

- \blacktriangleright tension upper limits independent of the major model parameters \rightarrow robustness closer to CMB
- both SGWB amplitude and local spectral slope information used
- The EPTA limit was the *first* conservative limit to match the constraints from the CMB; NANOGrav limit already 4 times better
- Future looks promising for PTAs (and eLISA)!