

Constraining the energy scale of cosmic strings with PTAs

Sotiris Sanidas

Anton Pannekoek Institute for Astronomy, University of Amsterdam

17th December 2015

28th Texas Symposium, Geneva, 2015 1/19

Outline

• A brief introduction to cosmic strings

• Modelling of the cosmic string SGWB

Sanidas, Battye, Stappers, 2012, Phys. Rev. D, 85, 122003 Sanidas, Battye, Stappers, 2013, Ap.J., 764, 108

• Updated constraints from the EPTA + NANOGrav

Lentati et al., 2015, MNRAS, 453, 2576 Arzoumanian et al., 2015, arXiv:1508.03024

Cosmic strings

Cosmic strings: 1-dimensional topological defects

- \blacksquare "Field Theory objects", created during phase transitions in the early Universe (Kibble mechanism - Spontaneous Symmetry Breaking)
	- \rightarrow Generic in all supersymmetric hybrid inflation scenarios

String theory counterparts as well - cosmic (D- and F-) superstrings

 \rightarrow Generic in brane inflation scenarios

For GUT scale cosmic strings

- i. formation: $\sim 10^{-35}$ sec
- ii. linear energy density: $\sim 10^{22}$ gr/cm
- iii. width: $\sim 10^{-30}$ m
- iv. velocity: relativistic
- v. Length: any

Why do we look for them?

The most characteristic quantity is their linear energy density μ (or tension)

 $G\mu/c^2$

▶ They provide a *unique* "laboratory" for High Energy Physics in the Early Universe

Cosmic Strings

Cosmic superstrings

1) Energy scale of the phase transition

1) Fundamental string coupling 2) Compactification/Warping scales

All these quantities are directly related to $G\mu/c^2$

Cosmic strings a relics of the Early Universe that might still exist and evolve today

 \rightarrow Key cosmological source for PTAs and eLISA

Cosmic String Network Evolution

A cosmic string network consists of:

- 1) Infinite cosmic strings
- 2) Cosmic string loops

The cosmic string network evolution is scale-invariant in the radiation and matter eras.

28th Texas Symposium, Geneva, 2015 5/19

ANTON PANNEKOE

Cosmic String Network Evolution

Scaling evolution: Requires an energy loss mechanism to attain. \rightarrow loop creation through (self)intercommutation with probability p

Loops once formed, decay (mainly) through GW emission and create a SGWB

Signatures of cosmic strings

Can GW-based results compete CMB ones?

28th Texas Symposium, Geneva, 2015 7/19

ANTON PANNEKOE

Computation of the cosmic string SGWB

Two main difficulties

- **Loop number density**
	- 1) Analytic approaches (Damour-Vilenkin, Polchinski-Rocha 2007, Lorenz et al. 2010)
	- 2) Evolution simulations (Vilenkin et al. 2006, Ringeval et al 2007,
	- Blanco-Pillado et al 2011,2014, Hindmarsh et al 2009)
- **Dominant GW emission mechanism**
	- 1) Kinks (O'Callaghan-Gregory 2010)
	- 2) Cusps (Damour-Vilenkin 2001, Siemens et al. 2007)
	- 3) Generic investigations (Caldwell-Allen 1992, DePies-Hogan 2007)
- ◮ Common the results to disagree quantitatively and qualitatively.

In SGWB investigations particularly:

- 1) many approximations used in the computation of the loop number density.
- 2) GW emission is mainly credited to cusps.

With total lack of any observational facts, our approach is to be

conservative and generic

Loop number density

Our approach is based on the one-scale model (Kibble, 1974)

Loops are born at a characteristic length scale

 $\ell_{\rm b} = \alpha d_{\rm H}(t_{\rm b})$

 \rightarrow Fundamental prerequisite: The network follows a scaling evolution.

Energy lost to attain scaling \rightarrow Loop creation rate:

$$
\frac{dN_{\text{loop},\text{css}}}{dt}
$$

$$
\rightarrow
$$
 For cosmic superstrings $\frac{dN_{\text{loop,css}}}{dt} = \frac{1}{p^k} \frac{dN_{\text{loop,css}}}{dt}$

Loops decay through GW emission only

$$
\ell(t, t_{\rm b}) = f_{\rm r} \alpha d_{\rm H}(t_{\rm b}) - \frac{\Gamma G \mu}{c} (t - t_{\rm b})
$$

From these we can compute the loop number density $n(\ell, t)$ 28th Texas Symposium, Geneva, 2015 9/19

GW emission mechanism

Generic GW emission modelling: a loop that oscillates relativistically and emits GWs

GW emission harmonics (modes): $f_n = \frac{2nc}{e}$ $\frac{n\epsilon}{\ell}$, $n = 1, \ldots, \infty$

 \rightarrow High emission modes cut-off imposed, n_{*} (gravitational backreaction)

• GW power emission:
$$
\frac{dE_{\text{gw},\text{loop}}}{dt} = P_n G \mu^2 c, \quad P_n = \Gamma n^{-q} / \sum_{m=1}^{\infty} m^{-q}
$$

 \rightarrow spectral index q depending on the emission mechanism (cusps or kinks)

$$
\Omega_{\rm gw}(f) = \frac{2G\mu^2c^3}{\rho_{\rm crit}a^5(t_0)f} \sum_{j=1}^{n_*} jP_j \int_{t_{\rm f}}^{t_0} a^5(t') n_j(f,t') dt'
$$

28th Texas Symposium, Geneva, 2015 10/19

Corrections due to massive particle annihilation

28th Texas Symposium, Geneva, 2015 11/19 11/19

The model parameters

The main parameters that govern the GW spectrum are:

 \triangleright The cosmic string tension, $G\mu$: $G\mu = 10^{-6} - 10^{-20}$ (?)

 \triangleright The birth scale of loops, α : loop size 0.1 d_H(t₀)–string width

 \triangleright The intercommutation probability, $p : p = 1 - 10^{-3}$

 $p=1$ (cosmic strings), $p=1-10^{-3}$ (cosmic superstrings) Also unknown is how it affects the infinite string/loop population: $\rho_{\infty} \propto p^{-1 \text{ or } -0.6}$

The dominant GW emission mechanism: cusps or kinks?

- 1) Spectral index, $q: q = 4/3$ (cusps) or $q = 2$ (kinks)
- 2) Emission modes cut-off, n_* : $n_* = 1 \rightarrow \infty$

Reducing the parameter space

 \rightarrow Possible observed networks are limited by a low-frequency cut-off. The minimum frequency at which a network can emit is defined by the largest loops present

$$
f \approx \frac{2n}{\alpha d_{\rm H}(t_0)}, \quad \alpha_{\rm min.} \approx \frac{2}{f d_{\rm H}(t_0)}
$$

► PTAs:
$$
\alpha_{\min.} \approx 10^{-9}
$$

\n▶ elISA: $\alpha_{\min.} \approx 10^{-16}$
\n▶ LIGO: $\alpha_{\min.} \approx 10^{-20}$

 \rightarrow The high-emission mode cut-off saturates much below infinity. Insignificant changes in the GW spectrum for:

- \triangleright n_* > 10^4 in the cusp dominated emission
- n_* > 10^2 in the kink dominated emission

ANTON PANNEKOEK INSTITUT

Exclusion curves

- Exclusion curves: Networks which comply with the SGWB limit
- **Constraints** utilising amplitude+slope information

28th Texas Symposium, Geneva, 2015 14/19

Exclusion curves

Only $n_* = 1$ and $n_* = 10^4, q = 4/3$ needed for the upper limits on $G\mu/c^2$

28th Texas Symposium, Geneva, 2015 15/19 15/19

EPTA 2015 limit on $G\mu/c^2$ ($p=1$)

ANTON PANNEKOEK

28th Texas Symposium, Geneva, 2015 16/19

NANOGrav 2015 limit on $G\mu/c^2$ ($p=1$)

ANTON PANNEKOEK

Conclusions

We provide a generic framework to describe the GW spectrum of cosmic strings based on the one-scale model.

- \blacktriangleright easy to modify and expand
- \blacktriangleright provides flexibility in marginalising its main uncertainties

2015 tension upper limits from the EPTA and NANOGrav

- \triangleright tension upper limits independent of the major model parameters \rightarrow robustness closer to CMB
- both SGWB amplitude and local spectral slope information used
- \triangleright The EPTA limit was the *first* conservative limit to match the constraints from the CMB; NANOGrav limit already 4 times better
- Future looks promising for PTAs (and eLISA)!