Relaxing the limits on inflationary magnetogenesis

Christos G. Tsagas

Department of Physics
Aristotle University of Thessaloniki
Thessaloniki, Greece

28th Texas Symposium
Geneva, December 2015
Magnetic fields are everywhere

From the Earth all the way out to remote protogalaxies and recently in the intergalactic space (?)

Origin as yet unknown

Late-time or early time (?)

Many scenarios, but the issue is still open
Facts & Open Questions

Magnetic fields are everywhere

From the Earth all the way out to remote protogalaxies
and recently
in the intergalactic space (?)

Origin as yet unknown

Late-time or early time (?)

Many scenarios, but the issue is still open
Early-time Magnetogenesis

Galactic dynamo requirements

Minimum coherence length

\((\lambda_B)_0 \sim 10 \text{ Kpc}\)

Strength-range

\(10^{-22} \text{ G} \lesssim B_0 \lesssim 10^{-12} \text{ G}\)

Post-inflationary \(B\)-Fields

Problem

Too small correlation lengths:

\((\lambda_B)_0 \ll 10 \text{ Kpc}\)

Solution

“Inverse cascade” (?)

Inflationary \(B\)-Fields

Problem

Typically too weak:

\(B_0 \ll 10^{-22} \text{ G}\)

Solution

Outside classical EM (?)
Early-time Magnetogenesis

Galactic dynamo requirements

Minimum coherence length

\[(\lambda_B)_0 \sim 10 \text{ Kpc}\]

Strength-range

\[10^{-22} \text{ G} \lesssim B_0 \lesssim 10^{-12} \text{ G}\]

Post-inflationary B-Fields

Problem

Too small correlation lengths:

\[(\lambda_B)_0 \ll 10 \text{ Kpc}\]

Solution

"Inverse cascade" (?)

Inflationary B-Fields

Problem

Typically too weak:

\[B_0 \ll 10^{-22} \text{ G}\]

Solution

Outside classical EM (?)
Early-time Magnetogenesis

Galactic dynamo requirements

Minimum coherence length

\[(\lambda_B)_0 \sim 10 \text{ Kpc}\]

Strength-range

\[10^{-22} \text{ G} \lesssim B_0 \lesssim 10^{-12} \text{ G}\]

Post-inflationary \(B\)-Fields

Problem

Too small correlation lengths:

\[(\lambda_B)_0 \ll 10 \text{ Kpc}\]

Solution

“Inverse cascade” (?)

Inflationary \(B\)-Fields

Problem

Typically too weak:

\[B_0 \ll 10^{-22} \text{ G}\]

Solution

Outside classical EM (?)
Inflationary Magnetogenesis

Advantage

Very large correlation lengths: \((\lambda_B)_0 \gg 10 \text{ Kpc}\)

Disadvantage

Extremely weak today: \(B_0 \lesssim 10^{-53} \text{ G}\)

Reason

Adiabatic magnetic decay

\[B \propto a^{-2} \]

Throughout the lifetime of the universe

On all scales
Inflationary Magnetogenesis

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very large correlation lengths: $\lambda_B \gg 10\text{ Kpc}$</td>
<td>Extremely weak today: $B_0 \lesssim 10^{-53}\text{ G}$</td>
</tr>
</tbody>
</table>

Reason

Adiabatic magnetic decay

$$B \propto a^{-2}$$

Throughout the lifetime of the universe

On all scales
Inflationary Magnetic Fields

On spatially flat FRW backgrounds

\[
\dot{B}_a + 5 H \dot{B}_a + 3(1 - w) H^2 B_a - D^2 B_a = J_a ,
\]

to linear order. Setting \(B_a = a^2 B_a , \)

\[
B''_a - a^2 D^2 B_a = a^2 J_a .
\]

During inflation

The universe is a very poor conductor (i.e. \(J_a = 0 \)). Therefore.

\[
B'''_a - a^2 D^2 B_a = 0 .
\]

Then, at horizon crossing,

\[
B(k) = a^2 B(k) = C_1 \cos(k \eta) + C_2 \sin(k \eta) .
\]

Well outside the horizon

When \(\lambda_B \gg \lambda_H \Leftrightarrow k \eta \ll 1 , \)

\[
a^2 B(k) = C_1 + C_2 k \eta , \quad \text{with} \quad a = a(\eta) .
\]
Inflationary Magnetic Fields

On spatially flat FRW backgrounds

\[\dot{B}_a + 5H \dot{B}_a + 3(1 - w)H^2 B_a - D^2 B_a = J_a , \]

to linear order. Setting \(B_a = a^2 B_a \),

\[B'_a - a^2 D^2 B_a = a^2 J_a . \]

During inflation

The universe is a very poor conductor (i.e. \(J_a = 0 \)). Therefore.

\[B''_a - a^2 D^2 B_a = 0 . \]

Then, at horizon crossing,

\[B_{(k)} = a^2 B_{(k)} = C_1 \cos(k\eta) + C_2 \sin(k\eta) . \]

Well outside the horizon

When \(\lambda_B \gg \lambda_H \Leftrightarrow k\eta \ll 1 \),

\[a^2 B_{(k)} = C_1 + C_2 k\eta , \quad \text{with} \quad a = a(\eta) . \]
Large-scale, Post-inflationary Magnetic Evolution (I)

On subhorizon scales
- Electric currents are formed
- The currents freeze the B-fields into the matter
- The magnetic flux remains conserved
- The B-fields decay adiabatically

On superhorizon scales
- There are no electric currents
- The magnetic fields are causally disconnected
- The magnetic freezing-in process is causal
- The B-fields will freeze-in once they have come into full causal contact
- The B-fields still retain the memory of their distant past
Large-scale, Post-inflationary Magnetic Evolution (I)

On subhorizon scales
- Electric currents are formed
- The currents freeze the B-fields into the matter
- The magnetic flux remains conserved
- The B-fields decay adiabatically

On superhorizon scales
- There are no electric currents
- The magnetic fields are causally disconnected
- The magnetic freezing-in process is causal
- The B-fields will freeze-in once they have come into full causal contact
- The B-fields still retain the memory of their distant past
Large-scale, Post-inflationary Magnetic Evolution (II)

Evolution during reheating & dust \((a \propto \eta^2)\)

\[
B = - (3B_* + \eta_* B'_*) \left(\frac{a_*}{a} \right)^2 + (4B_* + \eta_* B'_*) \left(\frac{a_*}{a} \right)^{3/2}.
\]

Evolution during radiation \((a \propto \eta)\)

\[
B = - (B_* + \eta_* B'_*) \left(\frac{a_*}{a} \right)^2 + (2B_* + \eta_* B'_*) \left(\frac{a_*}{a} \right).
\]

Superadiabatic amplification when \(\lambda_B \gg \lambda_H\)

As long as \(4B_* + \eta_* B'_* \neq 0\) and \(2B_* + \eta_* B'_* \neq 0\),

\[
B \propto a^{-3/2} \quad \text{and} \quad B \propto a^{-1}.
\]
Evolution during reheating & dust \((a \propto \eta^2)\)

\[B = - (3B_* + \eta_* B'_*) \left(\frac{a_*}{a} \right)^2 + (4B_* + \eta_* B'_*) \left(\frac{a_*}{a} \right)^{3/2} . \]

Evolution during radiation \((a \propto \eta)\)

\[B = - (B_* + \eta_* B'_*) \left(\frac{a_*}{a} \right)^2 + (2B_* + \eta_* B'_*) \left(\frac{a_*}{a} \right) . \]

Superadiabatic amplification when \(\lambda_B \gg \lambda_H\)

As long as \(4B_* + \eta_* B'_* \neq 0\) and \(2B_* + \eta_* B'_* \neq 0,\)

\[B \propto a^{-3/2} \quad \text{and} \quad B \propto a^{-1} . \]
The Role of the Initial Conditions

<table>
<thead>
<tr>
<th>Scenario No 1 (standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adiabatic decay during inflation & no “surface layers” ([H]^+_- = 0)</td>
</tr>
<tr>
<td>The slowly decaying modes do not survive (B_0 \lesssim 10^{-53} \text{ G})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario No 2 (non-conventional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-adiabatic decay during inflation (e.g. (B \propto a^{-m}), with (0 < m < 2))</td>
</tr>
<tr>
<td>The slowly decaying modes survive (B_0 \gg 10^{-53} \text{ G})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario No 3 (conventional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adiabatic decay during inflation & finite “surface layers” ([H]^+_- \neq 0)</td>
</tr>
<tr>
<td>The slowly decaying modes survive (B_0 \gg 10^{-53} \text{ G})</td>
</tr>
</tbody>
</table>
The Role of the Initial Conditions

<table>
<thead>
<tr>
<th>Scenario No 1 (standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adiabatic decay during inflation & no “surface layers” (([H]^+_) = 0)</td>
</tr>
<tr>
<td>The slowly decaying modes do not survive ((B_0 \lesssim 10^{-53} , \text{G}))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario No 2 (non-conventional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-adiabatic decay during inflation (e.g. (B \propto a^{-m}), with (0 < m < 2))</td>
</tr>
<tr>
<td>The slowly decaying modes survive ((B_0 \gg 10^{-53} , \text{G}))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario No 3 (conventional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adiabatic decay during inflation & finite “surface layers” (([H]^-_) \neq 0)</td>
</tr>
<tr>
<td>The slowly decaying modes survive ((B_0 \gg 10^{-53} , \text{G}))</td>
</tr>
</tbody>
</table>
The Role of the Initial Conditions

Scenario No 1 (standard)
- Adiabatic decay during inflation & no “surface layers” \(([H]^+ = 0) \)
- The slowly decaying modes do not survive \((B_0 \lesssim 10^{-53} \text{ G}) \)

Scenario No 2 (non-conventional)
- Non-adiabatic decay during inflation (e.g. \(B \propto a^{-m} \), with \(0 < m < 2 \))
- The slowly decaying modes survive \((B_0 \gg 10^{-53} \text{ G}) \)

Scenario No 3 (conventional)
- Adiabatic decay during inflation & finite “surface layers” \(([H]^+ \neq 0) \)
- The slowly decaying modes survive \((B_0 \gg 10^{-53} \text{ G}) \)
Scenario No 2

Strong inflationary amplification \((B \propto a^{-1/2})\)

\[B_0 \sim 10^{-2} \text{ G } \quad \text{(for } M \sim 10^{17} \text{ GeV } \& \text{ } T_{RH} \sim 10^{10} \text{ GeV)}\]

Mild inflationary amplification \((B \propto a^{-3/2})\)

\[B_0 \sim 10^{-25} \text{ G } \quad \text{(for } M \sim 10^{17} \text{ GeV } \& \text{ } T_{RH} \sim 10^{10} \text{ GeV)}\]

Reverse engineering the galactic-dynamo constraints

Today the dynamo requires

\[10^{-22} \text{ G} \lesssim B_0 \lesssim 10^{-12} \text{ G}\]

At the end of inflation,

<table>
<thead>
<tr>
<th>(\lambda_0) (Mpc)</th>
<th>(T_{HC}) (GeV)</th>
<th>(B_{DS}) (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-2})</td>
<td>(10^{-6})</td>
<td>(10^{22} \lesssim B_{DS} \lesssim 10^{32})</td>
</tr>
<tr>
<td>1</td>
<td>(10^{-8})</td>
<td>(10^{20} \lesssim B_{DS} \lesssim 10^{30})</td>
</tr>
<tr>
<td>(10^{3/2})</td>
<td>(10^{-10})</td>
<td>(10^{18} \lesssim B_{DS} \lesssim 10^{28})</td>
</tr>
<tr>
<td>(10^{3})</td>
<td>(10^{-13})</td>
<td>(10^{17} \lesssim B_{DS} \lesssim 10^{27})</td>
</tr>
</tbody>
</table>
Scenario No 2

Strong inflationary amplification \((B \propto a^{-1/2})\)

\[B_0 \sim 10^{-2} \text{ G} \quad \text{(for } M \sim 10^{17} \text{ GeV } \& \ T_{RH} \sim 10^{10} \text{ GeV}) \]

Mild inflationary amplification \((B \propto a^{-3/2})\)

\[B_0 \sim 10^{-25} \text{ G} \quad \text{(for } M \sim 10^{17} \text{ GeV } \& \ T_{RH} \sim 10^{10} \text{ GeV}) \]

Reverse engineering the galactic-dynamo constraints

Today the dynamo requires

\[10^{-22} \text{ G} \lesssim B_0 \lesssim 10^{-12} \text{ G} \]

At the end of inflation,

<table>
<thead>
<tr>
<th>(\lambda_0) (Mpc)</th>
<th>(T_{HC}) (GeV)</th>
<th>(B_{DS}) (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-2})</td>
<td>(10^{-6})</td>
<td>(10^{22}) (\lesssim B_{DS} \lesssim 10^{32})</td>
</tr>
<tr>
<td>(1)</td>
<td>(10^{-8})</td>
<td>(10^{20}) (\lesssim B_{DS} \lesssim 10^{30})</td>
</tr>
<tr>
<td>(10^{3/2})</td>
<td>(10^{-10})</td>
<td>(10^{18}) (\lesssim B_{DS} \lesssim 10^{28})</td>
</tr>
<tr>
<td>(10^3)</td>
<td>(10^{-13})</td>
<td>(10^{17}) (\lesssim B_{DS} \lesssim 10^{27})</td>
</tr>
</tbody>
</table>
Scenario No 3

Residual magnetic field

$$(\lambda_B)_0 \sim 10 \text{ Kpc} \implies T_{HC} \sim 10^{-6} \text{ GeV}$$

$$B_0 \approx 10^{-33} \left(\frac{M}{10^{17}}\right)^{2/3} \left(\frac{T_{RH}}{10^{10}}\right)^{1/3} \text{ G}.$$

Subsequent amplification

Spherically symmetric galactic collapse $\implies B_0 \sim 10^{-29} \text{ G}$

Anisotropic galactic collapse $\implies B_0 \sim 10^{-27} \text{ G}$

Additional amplification (?)

When $w = 1$ (stiff matter) $\implies B = \text{constant}$

Stiff-matter era (from, say, $T_{RH} \sim 10^{10} \text{ GeV}$ to $T \sim 10^{4} \text{ GeV}$)

$B_0 \sim 10^{-21} \text{ G}$
Scenario No 3

Residual magnetic field

$(\lambda_B)_0 \sim 10 \text{ Kpc} \quad \Rightarrow \quad T_{HC} \sim 10^{-6} \text{ GeV}$

$B_0 \sim 10^{-33} \left(\frac{M}{10^{17}} \right)^{2/3} \left(\frac{T_{RH}}{10^{10}} \right)^{1/3} \text{ G}.$

Subsequent amplification

Spherically symmetric galactic collapse \quad \Rightarrow \quad B_0 \sim 10^{-29} \text{ G}

Anisotropic galactic collapse \quad \Rightarrow \quad B_0 \sim 10^{-27} \text{ G}

Additional amplification (?)

When $w = 1$ (stiff matter) \quad \Rightarrow \quad B = \text{ constant}

Stiff-matter era \quad \text{(from, say, } T_{RH} \sim 10^{10} \text{ GeV to } T \sim 10^{4} \text{ GeV)}

$B_0 \sim 10^{-21} \text{ G}$
Scenario No 3

Residual magnetic field

\[(\lambda_B)_0 \sim 10 \text{ Kpc} \implies T_{HC} \sim 10^{-6} \text{ GeV}\]

\[B_0 \sim 10^{-33} \left(\frac{M}{10^{17}} \right)^{2/3} \left(\frac{T_{RH}}{10^{10}} \right)^{1/3} \text{ G} .\]

Subsequent amplification

Spherically symmetric galactic collapse \(\implies B_0 \sim 10^{-29} \text{ G}\)

Anisotropic galactic collapse \(\implies B_0 \sim 10^{-27} \text{ G}\)

Additional amplification (?)

When \(w = 1\) (stiff matter) \(\Rightarrow B = \text{constant}\)

Stiff-matter era (from, say, \(T_{RH} \sim 10^{10} \text{ GeV}\) to \(T \sim 10^4 \text{ GeV}\))

\[B_0 \sim 10^{-21} \text{ G}\]
Summary

By appealing to causality

- The large-scale magnetic decay may slow down
- Strong inflationary amplification may not be necessary
- Conventional magnetogenesis might still work
Thanks

and

Merry Christmas