Correlated neutrino & photon emission from Mrk 421 during flares Maria Petropoulou Purdue University, USA In collaboration with Stefan Coenders (TUM) and Stavros Dimitrakoudis (University of Alberta) 28th Texas Symposium on Relativistic Astrophysics Geneva, Switzerland 17 December 2015 ## **ICECUBE PRELIMINARY RESULTS (ICRC 2015)** #### High-Energy Starting Event (HESE) Sample Left: Very high energy neutrino spectrum with 4 years of data: - ★ 54 events in the energy range 30 TeV – 2 PeV. - * Spectral slope of astrophysical flux: γ =2.58 Right: Arrival directions of the 54 very high energy events found in IceCube using 4 years of data (2010–2014). - * Not significant clustering found. - ***** Consistent with isotropy. e.g. Guetta et al. 2002, Torres et al. 2005 e.g. Metzger et al. 2015 High-energy e.g. Kachelriess & Ostapchenko 2014 (see also Ahlers et al 2015 e.g. Murase et al. 2011, for a review) (full or partial contribution)? Galactic e.g. Mannheim 1995, Halzen & Zas 1997, Atoyan & Dermer 2001, 2003, Petropoulou et al. 2015 e.g. Waxman & Bahcall 1999, Murase 2008, Hummer et al. 2012, Petropoulou et al 2014 e.g. Tamborra et al. 2014, Loeb & Waxman 2006 e.g. Guetta et al. 2002, Torres et al. 2005 e.g. Metzger et al. 2015 High-energy neutrinos e.g. Kachelriess & Ostapchenko 2014 Galactic (full or partial contribution)? e.g. Mannheim 1995, Halzen & Zas 1997, Atoyan & Dermer 2001, 2003, Petropoulou et al. 2015 e.g. Waxman & Bahcall 1999, Murase 2008, Hummer et al. 2012, Petropoulou et al 2014 (see also Ahlers et al 2015 for a review) e.g. Murase et al. 2011, Zirakashvili & Ptuskin 2015 e.g. Tamborra et al. 2014, Loeb & Waxman 2006 e.g. Guetta et al. 2002, Torres et al. 2005 e.g. Metzger et al. 2015 High-energy neutrinos e.g. Kachelriess & Ostapchenko 2014 Galactic (full or partial contribution)? Extragalactic? Blazars e.g. Waxman & Bahcall 1999, Murase 2008, Hummer et al. 2012, Petropoulou et al 2014 (see also Ahlers et al 2015 for a review) e.g. Tamborra et al. 2014, Loeb & Waxman 2006 #### Variable source in various energy bands & timescales! Type: Blazar (BL Lac) in the constellation of Ursa Major Redshift: z=0.031 (De Vacouleurs. et al. 1991) Distance: ~ 135 Mpc Declination: +38° 12′ 32″ Excellent laboratory for studying blazar emission physics #### **Motivation** - * Mrk 421 was suggested as probable counterpart of neutrino event 9 - ★ Predicted v flux from its "quiescent" (=4 months with no strong flaring activity) state similar to that measured for v ID 9 Padovani & Resconi 2014 Petropoulou et al. 2015 #### Aims - * Can the hadronic model explain flaring activity? - * How does the neutrino flux correlate with the photon flux? - \star What is the expected neutrino event rate from a \sim day flare? - * What is the expected neutrino event number over the **5yr IceCube livetime**? Unprecedented MW coverage & simultaneous observations for MJD 55265-55277 (data are adopted from Aleksic et al. 2015) Petropoulou, Coenders, Dimitrakoudis, Aph submitted #### Daily all-flavor v flux spectra High-energy v flux vs. photon flux - ★ < 1 PeV neutrino flux is ~ constant - ★ > 1 PeV neutrino flux varies - ★ > 1 PeV neutrino flux is correlated with X-rays and γ-rays - * >1 PeV ν GeV γ-ray correlation will be applied to the long-term Fermi/LAT light curve #### Through-going events - Larger statistical sample - Larger effective volume - Atm. background not removed - Poorer energy determination - Smaller statistical sample - Smaller effective volume - Atm. Background removed - Accurate energy determination Effective Area for HESE over the northern hemisphere | Muon neutrino+antineutrino | rate | (evt / | yr) | |----------------------------|------|--------|-----| |----------------------------|------|--------|-----| | | Mrk 421 ^a | | Backgroundb | | |------------------------|----------------------|---------------|------------------------|------------------------| | E_{ν} (TeV) | 13-day flare | quiescent | atmospheric | diffuse | | | (55265-55277) | (54850-54983) | | | | 0.1 - 100 | 0.023 | 0.019 | 7.371 | 0.010 | | $100 - 10^3$ | 0.264 | 0.282 | 1.852×10^{-3} | 2.203×10^{-3} | | $10^3 - 5 \times 10^4$ | 0.306 | 0.288 | 4.554×10^{-6} | 2.236×10^{-4} | | | | | | | | | \sim 0.57 evt/yr | ~0.57 evt/yr | Negligible | | - * Neutrinos (> 100 TeV) expected from the flare: $13 \times 0.57/333 = 0.02$ - * Neutrinos (> 100 TeV) expected from quiescent period: $120 \times 0.57/333 = 0.2$ - ★ Caution needed when associating a v event with a flaring blazar lying in the error circle of v detection The 6.9 yr Fermi light curve (0.1-300 GeV) overlaps with the 5yr IceCube livetime ### Major flares | No. | T (days) | $v_{\mu} + \bar{v}_{\mu}$ | $P_{N_{\nu}\geq 1}(\%)$ | |--------------|----------|---------------------------|-------------------------| | Flares 1a+1b | 105 | 0.61 ± 0.16 | 46 ± 8 | | Flare 2 | 70 | 0.32 ± 0.07 | 27 ± 5 | | Flare 3 | 98 | 0.26 ± 0.05 | 23 ± 4 | | Flares 4a+4b | 112 | 0.26 ± 0.05 | 23 ± 4 | | ∑ Flares | 385 | 1.46 ± 0.32 | 77 ± 7 | Similar probability for detecting at least 1 neutrino from the 2012 flare alone and the whole IceCube Season 3 #### Without major flares | Season | T (days) | $\nu_{\mu} + \bar{\nu}_{\mu}$ | $P_{N_{\nu}\geq 1}(\%)^{\dagger}$ | |-----------------|-------------------|-------------------------------|-----------------------------------| | 06/2010-05/2011 | 364 | 0.43 ± 0.06 | 34 ± 4 | | 06/2011-05/2012 | 364 | 0.38 ± 0.05 | 32 ± 3 | | 06/2012-05/2013 | 371 | 0.71 ± 0.11 | 51 ± 5 | | 06/2013-05/2014 | 364 | 0.70 ± 0.11 | 50 ± 5 | | 06/2014-05/2015 | 350 | 0.47 ± 0.06 | 38 ± 4 | | ∑ w/o Flares | 1834 ^a | 2.73 ± 0.38 | 94 ± 2 | | \sum w Flares | 1834 | 3.59 ± 0.60 | 97 ± 2 | - * The neutrino event rate from the 13-day flare from Mrk 421 is 0.57 evt/yr and similar to the rate from a 4-month period of no flaring activity - * 1 γ-ray flare from Mrk 421 does not necessarily lead to 1 neutrino event - * Accumulation of many week-duration flares necessary for the detection of at least 1 neutrino - * Neutrino flux above 1 PeV correlates with X-ray and γ-ray fluxes - * Major flares (long duration & large flux increase) have a significant impact on the neutrino count over time - * Utilizing the >1 PeV v-GeV γ-ray correlation and Fermi/LAT light curve of Mrk 421 we expect: ~3.6 v with flares and ~2.7 v without flares included. These exceed the threshold value for detection of at least 1 neutrino at 95% CL and 90% CL respectively - * No high-energy v detection would suggest that the correlation does not hold during major flares or/and the hadronic contribution to blazar emission is smaller - * Neutrino-photon flux correlations are model-dependent but important for optimizing time-dependent neutrino searches THANK YOU # Back-yn Slides # Point source searches with IceCube Advantages of using track-like events of charged μ: - ★ Angular resolution < 1 degree - ★ Good angular reconstruction reduces the background to a small area on the sky - ★ Large distances traveled in the detector → large effective volume - + CR μ background reduced due to Earth absorption - neutrino E difficult to be determined with accuracy - Earth absorption reduces neutrinos > 1 PeV # Effective areas # Calculation of uncertainties $$N_{\nu} \equiv \dot{N}_{\nu}T = \frac{\dot{N}_{\nu}^{q}}{F_{\nu}^{q}} \int_{T} dt \, F_{\nu}(t) = \dot{N}_{\nu}^{q} \int_{T} dt \left(\frac{F_{\gamma}(t)}{F_{\gamma}^{q}}\right)^{A}$$ $$\sigma_{n_{\nu}}^{2} = f_{\dot{N}_{\nu}^{q}}^{2} + f_{F_{\gamma,i}}^{2} + f_{F_{\gamma}^{q}}^{2} + f_{A}^{2}$$ Stacked contributions of various sources of uncertainty to the total one # Neutrino emission from all BL Lacs $$E_{\nu}F_{\nu}(E_{\nu}) = \frac{Y_{\nu\gamma}F_{\gamma}(>10 \text{ GeV})}{\int_{x_{\min}}^{\infty} dx \ x^{-s}e^{-x}} \left(\frac{E_{\nu}}{E_{\nu,p}}\right)^{-s+1} \exp\left(-\frac{E_{\nu}}{E_{\nu,p}}\right)$$ $$E_{\nu,p}(\delta, z, \nu_{\text{peak}}^S) \simeq \frac{17.5 \text{ PeV}}{(1+z)^2} \left(\frac{\delta}{10}\right)^2 \left(\frac{\nu_{\text{peak}}^S}{10^{16} \text{ Hz}}\right)^{-1}$$ - Radio luminosity function & evolution - Distribution of synchrotron peak frequency - Redshift - Distribution of Doppler factor - $-\gamma$ -ray constraints Padovani et al. 2015 # Point source & diffuse v signal An "outlier" in the Monte Carlo simulation (a single bright source) mimics the neutrino emission from a point source!