Quasi-periodic oscillations of perturbed tori

Varadarajan Parthasarathy^{*}, Antonios Manousakis, Włodzimierz Kluźniak, Nicolaus Copernicus Astronomical Center, ul.Bartycka 18, 00-716, Warszawa, Poland *E-mail: varada@camk.edu.pl

Abstract

 \hookrightarrow Axisymmetric hydrodynamical simulations of perturbed tori orbiting a black hole were performed.

- \hookrightarrow Equilibrium tori with a constant distribution of angular momentum in a pseudo-Newtonian potential (Kluźniak-Lee) were constructed.
- \hookrightarrow Epicyclic motion were triggered by adding sub-sonic velocity fields; radial, vertical and diagonal to the tori.
- $\hookrightarrow L_2$ norm of density ($\|\rho\|_2$) was measured as the perturbed tori evolved in time. \hookrightarrow Power spectrum of $\|\rho\|_2$ manifested eigenfrequencies of tori modes.

Modes

Modes	Frequencies (Ω_K)			
	$r_c = 5.2 r_g$	$r_c = 7.2 r_g$		
Radial (R)/harmonic	0.65/1.3	0.76/1.52		
Vertical (V)/harmonic (V_h)	1.0/2.0	1.0/2.0		
Breathing (B)	1.65	1.69		
Plus $(+)$	0.98	1.18		
X	1.18	1.26		

Table 1: Modes and frequencies. From left to right the columns are, modes with labels in parenthesis and theoretical values of frequencies (Ω_K) at r_c , where $r_q = 2GM/c^2$.

Fig. 1: Left: $\|\rho\|_2$ as a function of Keplerian time $(T_K \text{ at } r_c)$ for models T1a and T2a. Right: PSDs of $\|\rho\|_2$. Solid lines correspond to the theoretical values of fundamental eigenfrequencies and dashed lines to additional frequencies in the

 $r_c = 7.2 \ r_g$

Time (T_K)

Models

_											
	Model	Resolution	r/r_g	z/r_g	$r_{ m in}/r_g$	r_c/r_g	$r_{ m out}/r_g$	r_t/r_g	\mathcal{M}	r_t/r_c	Perturbation
	T1a	296×228	[4.8 - 5.6]	[-0.4 - 0.4]	5.02	5.2	5.39	0.18	0.3	0.03	vertical, radial, diagonal
	T1b	512×496	[4.8 - 5.6]	[-0.4 - 0.4]	5.02	5.2	5.39	0.18	0.3	0.03	vertical, diagonal
	T2a	296×228	[6.8 - 7.6]	[-0.4 - 0.4]	7.02	7.2	7.39	0.18	0.3	0.02	vertical, radial, diagonal
	T2b	512×496	[6.8 - 7.6]	[-0.4 - 0.4]	7.02	7.2	7.39	0.18	0.3	0.02	vertical, diagonal
	Т3	512×512	[4.5 - 6.0]	[-0.5 - 0.5]	4.84	5.2	5.62	0.36	0.3	0.07	vertical

Table 2: The Parameter space of the simulation. From left to right the columns are, model name, resolution, range of the radial (r) and vertical (z) domain, inner radius (r_{in}) , center of the torus (r_c) , outer radius (r_{out}) , cross section of torus r_t , magnitude of velocity perturbation (in Mach number \mathcal{M} at r_c) and ratio of the cross section of the torus to the distance from black hole (r_t/r_c) . The type of perturbation is also listed. Models T1a-T2b are thinner tori and T3 thicker torus. For models T1a-T3, $r_q = 2GM/c^2$.

Simulations

Numerical code PLUTO was used to perform the simulations. Frequencies of various modes obtained from the simulations are accurate to the order of 0.03.

Model	Trend of perturbation	Frequencies (Ω_K)	Modes
T1a	radial	0.65/1.3, 1.01, 1.68	R/harmonic, +, B
	vertical	$1.67, \ 1.99$	B, V_h
	diagonal	0.65/1.3, 1.0, 1.68, 1.99	R /harmonic, +, B, V_h
T1b	vertical	0.65, 1.01, 1.66, 1.99	$R, +, B, V_h$
	diagonal	0.65/1.29, 1.0, 1.68, 1.99	R /harmonic, +, B, V_h
T2a	radial	0.77/1.53, 1.15, 1.71	R/harmonic, +, B
	vertical	1.71, 1.99	B, V_h
	diagonal	0.77/1.52, 1.16, 1.73, 1.99	R /harmonic, +, B, V_h
T2b	vertical	0.76, 1.18, 1.71/3.37, 1.99/4.03	$R, +, B/harmonic, V_h/harmonic$
	diagonal	0.76/1.52, 1.16, 1.72, 2.0	R /harmonic, +, B, V_h
Τ3	vertical	0.64, 1.02, 1.2/2.36, 1.66/3.33, 1.95/3.89	$R, +, x/harmonic, B/harmonic, V_h/harmonic$

Fig. 2: Same as Fig. 1 for models T1b and T2b, respectively.

Thicker Torus

Time (T_k)

 $r_c = 5.2 \ r_a$

1.010

0.995

1.005 Vertical

1.02 Diagona

Conclusions

Table 3: Frequencies and corresponding modes of oscillating tori. From left to right: model name, type of perturbation, frequencies (Ω_K) at r_c obtained from simulations and modes corresponding to solid lines in PSDs, respectively.

References

Kluźniak W., Lee W. H., 2002, MNRAS, 335, L29 Blaes O. M. et al., 2006, MNRAS, 369, 1235 Vincent F. H. et al., 2014, A&A, 563, A109 Srámková T. E. et al., 2007, A&A, 467, 641 Mignone A. et.al, 2007, The ApJS, 170, 228

 \checkmark The thinner tori (T1a-T2b) manifests radial mode (R)/harmonic, plus-mode (+), breathing mode (B)/harmonic and vertical mode (V_h) /harmonic. The plus-mode and radial epicyclic mode appear in an approximate 3:2 ratio. Vertical epicyclic motion was not excited by radial perturbation.

 \checkmark Vertical oscillation of thicker torus (T3) exhibits radial mode (R), plus-mode (+), breathing mode (B)/harmonic, x-mode/harmonic and vertical mode (V_h) /harmonic.

 \checkmark Presence of radial mode and plus-mode in vertical oscillations of thinner tori (T1b & T2b) and thicker torus (T3) are numerical in origin and not a result of coupling between radial and vertical epicyclic modes, since simulations of unperturbed tori (T1b, T2b & T3) shows the presence of radial mode (R), plus-mode (+) and breathing mode (B).

 \checkmark Results from our simulations are relevant in the context of high-frequency quasi-periodic oscillations (HF QPOs) observed in stellar-mass black hole binaries.

The work was supported by Polish NCN grant 2013/08/A/ST9/00795.

