

Acoustically generated gravitational waves at ^a first orderphase transition

PRL 112, 041301 (2014) [arXiv:1304.2433], arXiv:1504.03291 ⁺ work in progress

David J. Weir [1],

with Mark Hindmarsh [2,3], Stephan J. Huber [3] and Kari Rummukainen [2]

Texas 2015, Geneva, 16 December 2015

3. University of Sussex, United Kingdom

^{1.} University of Stavanger, Norway

^{2.} Helsinki Institute of Physics and University of Helsinki, Finland

Motivation and context

- \bullet GWs are ^a unique and promising test of high energy physics (advanced LIGO and VIRGO; eLISA scheduled for 2034)
- \bullet First order PTs involve bubbles nucleating and growing: bubble collisions produce gravitational waves
- \bullet Standard Model EW PT is ^a crossover, but first order common in extensions (singlet, 2HDM, . . .)Andersen, Laine *et al.*, Kozaczuk *et al.*, Kamada and Yamada, Carena *et al.*, Bodeker ¨ *et al.*, Damgaard *et al.*
- \bullet First order PT around the EW scale *could* give right conditions for baryogenesis (but would thennot give ^a good signal for GWs)
- \bullet What physics can we extract from the GW power spectrum at EW scales?

Envelope approximation

Kosowsky, Turner and Watkins; Kamionkowski, Kamionkowsky and Turner

- \bullet Thin-walled bubbles, no fluid
- •Bubbles expand with velocity $v_{\rm w}$
- \bullet • Stress-energy tensor $\propto R^3$ on wall
- \bullet • Overlapping bubbles \rightarrow GWs
- •Keep track of solid angle
- \bullet Collided portions of bubbles sourcegravitational waves
- \bullet Resulting power spectrum is simple
	- •One scale (R_*)
	- •Two power laws (k^3, k^{-1})
	- •Amplitude
	- \Rightarrow 4 numbers define spectral form

The envelope approximation makes predictionsEspinosa, Konstandin, No and Servant; Huber and Konstandin

4-5 numbers parametrise the transition:

- • α , vacuum energy fraction
- \bullet $v_{\rm w}$, bubble wall speed
- κ , conversion efficiency to fluid KE \bullet
- \bullet Transition rate:
	- • H_\ast , Hubble rate at transition
	- β , bubble nucleation rate •

From Konstandin and Huber

Energy in GWs ($\Omega_{\rm GW}=$ $\rho_{\rm GW}/\rho_{\rm Tot})$:

$$
\Omega_{\rm GW}^{\rm envelope} \approx \frac{0.11 v_{\rm w}^3}{0.42 + v_{\rm w}^2} \left(\frac{H_*}{\beta}\right)^2 \frac{\kappa^2 \alpha^2}{(\alpha + 1)^2}
$$

Envelope approximation power laws do not depend on nucleation

Work in progress!

- \bullet Re-implemented the method of Huber and Konstandin
- \bullet Bubbles nucleated at the same time have same power laws as bubbles nucleated 'properly'
- •Can re-weight from equal time nucleation case to unequal time

Our approach: field+fluid system

- \bullet • Scalar ϕ + ideal fluid u^μ (treated using standard SR hydro Wilson and Matthews)
	- •• Split stress-energy tensor $T^{\mu\nu}$ into field and fluid bits Ignatius, Kajantie, Kurki-Suonio and Laine

$$
\partial_{\mu}T^{\mu\nu} = \partial_{\mu}(T^{\mu\nu}_{\text{field}} + T^{\mu\nu}_{\text{fluid}}) = 0
$$

 \bullet • Parameter η sets the scale of friction due to plasma

$$
\partial_{\mu}T^{\mu\nu}_{\text{field}} = \eta u^{\mu}\partial_{\mu}\phi \partial^{\nu}\phi \qquad \partial_{\mu}T^{\mu\nu}_{\text{fluid}} = -\eta u^{\mu}\partial_{\mu}\phi \partial^{\nu}\phi
$$

 \bullet • Effective potential $V(\phi,T)$ can be kept simple

$$
V(\phi, T) = \frac{1}{2}\gamma (T^2 - T_0^2)\phi^2 - \frac{1}{3}AT\phi^3 + \frac{1}{4}\lambda\phi^4
$$

- $\bullet \quad \gamma, \, T_0, \, A, \, \lambda$ chosen to match scenario of interest
- •Equations of motion (+ continuity equation)

$$
\partial_{\mu}\partial^{\mu}\phi + \frac{\partial V(\phi,T)}{\partial \phi} = -\eta u^{\mu}\partial_{\mu}\phi
$$

$$
\partial_{\mu}\left\{ \left[\epsilon + p\right]u^{\mu}u^{\nu} - g^{\mu\nu}[p - V(\phi,T)] \right\} = \left(\eta u^{\mu}\partial_{\mu}\phi + \frac{\partial V(\phi,T)}{\partial \phi}\right)\partial^{\nu}\phi
$$

5/16

Velocity profile development - deflagration [optional movie]

Here, $\eta=0.2$ (deflagration)

 \bullet Metric perturbations evolve as

$$
\ddot{h}_{ij} - \nabla^2 h_{ij} = 16\pi G T_{ij}^{\text{TT}}
$$

equivalently Garcia-Bellido and Figueroa; Easther, Giblin and Lim

$$
\ddot{u}_{ij} - \nabla^2 u_{ij} = 16\pi\tau_{ij}
$$

and project $h_{ij}(k)=\Lambda_{ij,lm}(k)u_{ij}(k)$ later

• Consider only terms at leading order in the perturbation h_{ij} \bullet

$$
\tau_{ij}^{\rm f} = W^2(\epsilon + p)V_iV_j \qquad \tau_{ij}^{\phi} = \partial_i\phi\partial_j\phi
$$

 \bullet • Power $\rho_{\text{GW}} =$ T_{00}^{grav} per logarithmic interval,

$$
\frac{d\rho_{\text{GW}}}{d\ln k} = \frac{1}{32\pi G V} \frac{k^3}{(2\pi)^3} \int d\Omega \ \Lambda_{ij,lm}(\hat{\mathbf{k}}) \dot{u}_{ij}(t,\mathbf{k}) \dot{u}_{lm}^*(t,\mathbf{k})
$$

Simulation slice example [optional movie]

Simulations at 1024^3 , deflagration, fluid kinetic energy density, \sim 250 bubbles

How the sources behave over time

- • ${{U}_{\mathrm{f}}}$ is the rms fluid velocity; ${{U}_{\phi}}$ the analogous field quantity
- •• Constructed from τ $\tau_{ii}^{\rm f}$ and τ_{ii}^{ϕ} , they indicate how strong each source is

$$
(\bar{\epsilon} + \bar{p})\overline{U}_{\rm f}^2 = \frac{1}{V} \int d^3x \underbrace{W^2(\epsilon + p)}_{(\tau_{ii}^{\rm f})^2} \qquad (\bar{\epsilon} + \bar{p})\overline{U}_{\phi}^2 = \frac{1}{V} \int d^3x \underbrace{(\partial_i \phi)^2}_{(\tau_{ii}^{\phi})^2}
$$

So does the envelope approximation really work?

- \bullet Compare field+fluid simulation with envelope approximation
- \bullet Nucleate ¹²⁵ bubbles in same locations

- \bullet Power laws for fluid source totally different
- •Field source OK (overestimated), but will be subdominant anyway

Acoustic waves source linear growth of gravitational waves

 \bullet • Sourced by T^{f}_{ij} only (T^{ϕ}_{ij} source is small constant shift)

•• Source generically scales as $\rho_{\rm GW}\propto t[G\xi_{\rm f}(\bar\epsilon+\bar p)^2]$ 2U 4 f]
]

Velocity power spectra and power laws

- \bullet • Weak transition: $\alpha_{T_{\rm N}} = 0.01, v$ w $_{\rm w} = 0.44$
- Power law behaviour above peak (approximately k^{-1} here) •
- "Ringing" due to simultaneous bubble nucleation, not physically important •
- \bullet Power is in the longitudinal modes – acoustic waves, not turbulence
- \bullet • If we know ${\rm d}V^2$ $/\mathrm{d} \ln k$, can work out $\dot{\rho}_\mathrm{GW}/\mathrm{d} \ln k\dots$?

•• Sourced by $T^{\rm f}_{ij}$ only

- •● Approximate k^{-3} power spectrum
- Finite size of box means that we choose not to probe behaviour below \bullet peak k

Define the fluid integral scale

$$
\xi_{\rm f} = \frac{1}{\langle V^2 \rangle} \int \frac{d^3k}{(2\pi)^3} |k|^{-1} P_V(k)
$$

and the analogous quantity ξ_GW for the gravitational wave power spectrum.

This length scale is what sets the peak of the fluid power spectrum.

Latest results: ⁴²⁰⁰³ **using PRACE access**

Some results from our latest runs $(4200³$ lattice) – also work in progress!

- •Curves every $1000/T_c$
- •• Here $v_{\rm w}=0.68$ (detonation)
- \bullet • Friction parameter now dimensionless, damping term $\eta \to \eta \phi^2/T$
- \bullet New source of GWs: sound waves from colliding bubble droplets
- •**•** Rate of GW energy production is **generically** $\rho_{\rm GW}$ $w \propto t[G\xi_f(\bar{\epsilon}+\bar{p})^2\overline{U}_f^4]$
- \bullet Large enhancement over envelope approximation at EW scale \rightarrow good news for models that do not produce strongly first-order PTs
- •Power laws different from envelope approximation
- \bullet Functional form of power spectrum still ^a broken power law
- \bullet Currently trying to understand power laws with larger simulations 18M CPU hours awarded by PRACE
- •Building a science case for eLISA – Caprini *et al.*

Dynamic range issues

- • Most realtime lattice simulations in the early universe have ^a single[nontrivial] length scale
- Here, many length scales important \bullet

 \bullet Simulations in arXiv:1504.03291 are with 2400^3 lattice, $\delta x = 2/T_{\rm c}$ \rightarrow approx 200k CPU hours each (\sim 3M total)

Transverse versus rotational modes – turbulence?

- \bullet Most power is in the longitudinal modes – acoustic waves, not turbulence
- \bullet ● System is quite linear. Reynolds number is ~ 100 due to discretisation.

GW power spectra – field and fluid sources

- \bullet By late times, fluid source dominates at all length scales
- \bullet $500/T_c$, $1000/T_c$, $1500/T_c$ ('before', 'during', 'after' collision)
- •Fluid source shown by dashed lines, total power solid lines
- \bullet Does the acoustic source matter?
	- \bullet Sound is damped by (bulk and) shear viscosity Arnold, Dogan and Moore; Arnold, Moore and Yaffe

$$
\left(\frac{4}{3}\eta_{s} + \zeta\right)\nabla^{2}V_{\parallel}^{i} + \ldots \Rightarrow \tau_{\eta}(R) \sim \frac{R^{2}\epsilon}{\eta_{s}}
$$

 \bullet • Compared to $\tau_{H_*}\sim H_*^{-1}$ ∗ $\frac{1}{2}$, on length scales

$$
R^2 \gg \frac{1}{H_*} \frac{\eta_s}{\epsilon} \sim 10^{-11} \frac{v_{\rm w}}{H_*} \left(\frac{T_{\rm c}}{100 \,\text{GeV}}\right)
$$

the Hubble damping is faster than shear viscosity damping.

- • Does the acoustic source enhance GWs?
	- \bullet Yes, we have

$$
\Omega_{\rm GW} \approx \left(\frac{\kappa \alpha}{\alpha + 1}\right)^2 (H_* \tau_{H_*}) (H_* \xi_{\rm f}) \Rightarrow \frac{\Omega_{\rm GW}}{\Omega_{GW}^{\rm envelope}} \gtrsim 60 \frac{\beta}{H_*}.
$$

extra slide