Dark Matter Ultracompact Minihalos & the Early Universe

Hamish Clark
University of Sydney
Outline

Based on three recent papers:

➔ Adams, Aslanyan, Bringmann, Clark, Easter, Lewis, Price & Scott
 (will appear on the arXiv today!)

● The primordial Universe
● ‘Ultracompact’ dark matter halos
● Constraining abundance of rare objects
● Implications on the properties of the early Universe
Small fluctuations in the density of the early Universe seeded structure formation.
Primordial Fluctuations

Small fluctuations in the density of the early Universe seeded structure formation.
Small fluctuations in the density of the early Universe seeded structure formation.
Primordial Fluctuations

Small fluctuations in the density of the early Universe seeded structure formation.

The initial perturbations appear to have:
- Gaussian-distributed amplitudes:

\[
\text{pdf}(\delta) = \frac{1}{\sqrt{2\pi}\sigma_{\chi,H}^2(z_x, R)} \exp \left(-\frac{\delta^2}{2\sigma_{\chi,H}^2(z_x, R)^2} \right)
\]
Primordial Fluctuations

Small fluctuations in the density of the early Universe seeded structure formation.

The initial perturbations appear to have:
- Gaussian-distributed amplitudes:

\[
\text{pdf}(\delta) = \frac{1}{\sqrt{2\pi \sigma^2_{\chi,H}(z_X,R)}} \exp\left(-\frac{\delta^2}{2\sigma^2_{\chi,H}(z_X,R)^2}\right)
\]

- *about* the same **power** on all scales, characterised by a spectral index: \(n_\delta \approx 1\)

\[
\mathcal{P}_\delta(k) \propto k^{n_\delta - 1}
\]
Primordial Fluctuations

$P_\delta(k)$

$P_R(k)$

10^{-3} 10^{-2} 10^{-1} 1 10 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9 10^{10} 10^{11} 10^{12} 10^{13} 10^{14} 10^{15} 10^{16} 10^{17} 10^{18} 10^{19}

10^{-9} 10^{-10} 10^{-11} 10^{-12} 10^{-13} 10^{-14} 10^{-15} 10^{-16} 10^{-17} 10^{-18} 10^{-19}

k (Mpc$^{-1}$)

CMB, Lyman-α, LSS and other cosmological probes

Bringmann, Scott, Akrami (2012)
Primordial Fluctuations

$P_\delta(k)$ vs $k (\text{Mpc}^{-1})$

- CMB, Lyman-α, LSS and other cosmological probes

Bringmann, Scott, Akrami (2012)
Primordial Fluctuations

Bringmann, Scott, Akrami (2012)
Primordial Fluctuations

Hamish Clark
Primordial Fluctuations

$P_\delta(k)$

$P_R(k)$

$\sqrt{}$

CMB, Lyman-\(\alpha\), LSS and other cosmological probes

Bringmann, Scott, Akrami (2012)
Requirements for formation

- A fluctuation of amplitude $10^{-3} < \delta < 0.3$
- Isolated formation (seeded well before matter-radiation equality) - providing purely radial infall
Ultracompact Minihalos

Requirements for formation

- A fluctuation of amplitude $10^{-3} < \delta < 0.3$

- Isolated formation (seeded well before matter-radiation equality) - providing purely radial infall

Properties

- Extremely dense dark matter halo: an \textit{Ultracompact Minihalo} (UCMH)

- $\rho \propto r^{-2.25}$ compared to standard $\rho \propto r^{-1}$
Ultracompact Minihalos

Requirements for formation

- A fluctuation of amplitude $10^{-3} < \delta < 0.3$
- Isolated formation (seeded well before matter-radiation equality) - providing purely radial infall

UCMHs are very useful

- Persist through to present day
- Mass maps to scale. Abundance maps to primordial power.
- Much more likely to form than PBHs
- Very good indirect DM detection targets

Properties

- Extremely dense dark matter halo: an Ultracompact Minihalo (UCMH)
- $\rho \propto r^{-2.25}$ compared to standard $\rho \propto r^{-1}$
Constraining UCMHs

Gamma-ray Sources

$M_{\text{UCMH}}^0 (M_\odot)$

![Graph showing f_{max} vs. k (Mpc$^{-1}$) for different categories of gamma-ray sources.](attachment:gamma-ray_sources_graph.png)
Implied Constraints on the Early Universe

Bringmann, Scott, Akrami (2012)
Implied Constraints on the Early Universe

$P_\delta(k)$

- Primordial black holes
- CMB, Lyman-α, LSS and other cosmological probes

$P_{R}(k)$

k (Mpc$^{-1}$)

Bringmann, Scott, Akrami (2012)
Implied Constraints on the Early Universe

Assuming that dark matter annihilates!

- Ultracompact minihalos (gamma rays, Fermi-LAT)
- Primordial black holes
- CMB, Lyman-α, LSS and other cosmological probes

Bringmann, Scott, Akrami (2012)
Gravitational Lensing

• Least ‘sensitive’: Strong Lensing
Gravitational Lensing

- Least ‘sensitive’: Strong Lensing
- Microlensing: Magnification & Position
Gravitational Lensing

- Least 'sensitive': Strong Lensing
- Microlensing: Magnification & Position
Gravitational Lensing

- Least 'sensitive': Strong Lensing
- Microlensing: Magnification & Position
- Negligible deflection: Time-delay microlensing

\[\tau = \frac{1}{c} \int_C ds - \frac{2}{c^3} \int_C \varphi(r) ds \]

Light travel time
Gravitational Lensing

- Least ‘sensitive’: Strong Lensing
- Microlensing: Magnification & Position
- Negligible deflection: Time-delay microlensing

\[
\tau = \frac{1}{c} \int_C ds - \frac{2}{c^3} \int_C \varphi(r) ds
\]

Light travel time
Integral over path \(C \)
parameterised by \(s \)
Gravitational Lensing

- Least ‘sensitive’: Strong Lensing
- Microlensing: Magnification & Position
- Negligible deflection: Time-delay microlensing

\[\tau = \frac{1}{c} \int_C ds - \frac{2}{c^3} \int_C \varphi(r) ds \]

- Light travel time
- Integral over path \(C \) parameterised by \(s \)
- Newtonian gravitational potential
Pulsar Timing

Single lensing event

- UCMH
- NFW
- Point Mass

Clark et al. (2015), arXiv: 1509.02938
Pulsar Timing

Single lensing event

Population of lenses

Clark et al. (2015), arXiv: 1509.02938
Single lensing event

- UCMH
- NFW
- Point Mass

Clark et al. (2015), arXiv: 1509.02938
Pulsar Timing

Clark et al. (2015), arXiv: 1509.02938
Pulsar Timing

Clark et al. (2015), arXiv: 1509.02938
Implied Constraints on the Early Universe

Assuming that dark matter annihilates!
Limiting Constraints on the Early Universe

Assuming that dark matter annihilates!
Assuming that dark matter annihilates!
Assuming that UCMHs can form up until $z = 200...$
- Primordial power spectral index, and higher order running

Implied constraints (95% CL)

Aslanyan et al. (In prep)
- Primordial power spectral index, and higher order running
- Inflation (slow roll parameters)

\[\epsilon_* = \frac{M_{Pl}^2}{2} \left(\frac{V'}{V} \right) ^2, \]

\[\eta_* = M_{Pl}^2 \frac{V''}{V}, \]

Aslanyan et al. (In prep)
- Primordial power spectral index, and higher order running
- Inflation (slow roll parameters)

\[\epsilon_* = \frac{M_{Pl}^2}{2} \left(\frac{V'}{V} \right)^2, \]

\[\xi_* = M_{Pl}^4 \frac{V''''}{V^2}, \]

\[\eta_* = M_{Pl}^2 \frac{V''}{V}, \]

\[\omega^3_* = M_{Pl}^6 \frac{V''V'''}{V^3}, \]
Implied constraints (95% CL)

- Primordial power spectral index, and higher order running
- Inflation (slow roll parameters)
- Stepped primordial power

Clark et al. (2015), arXiv: 1509.02941
- Primordial power spectral index, and higher order running
- Inflation (slow roll parameters)
- Stepped primordial power
- Non-Gaussianity:
 \[f_{NL} < 8.2 \] (CMB)
 \[f_{NL} < O(10) \] (PBHs)
 \[f_{NL} < O(100) \] (UCMHs)
- Primordial power spectral index, and higher order running

- Inflation (slow roll parameters)

- Stepped primordial power

- Non-Gaussianity:
 \[f_{NL} < 8.2 \] (CMB)
 \[f_{NL} < O(10) \] (PBHs)
 \[f_{NL} < O(100) \] (UCMHs)

- Cosmic string loop tension:
 \[G\mu < 1.7 \times 10^{-7} \] (CMB)
 \[G\mu < 6.5 \times 10^{-8} \] (K < 1000)
 \[G\mu < 1.5 \times 10^{-6} \] (K < 100)

Clark et al. (2015), arXiv: 1509.02941
Should significant additional primordial power be available on small scales, dark matter ‘Ultracompact Minihalos’ would be expected to form.

UCMHs are fantastic dark matter structures for both indirect detection & lensing.

These rare objects provide a new avenue of investigation into the early Universe.

This is all new! More work is needed, and will significantly improve existing results (N-body simulation, improving UCMH & PBH abundance limits, cosmic string loop K-factor).