Electromagnetic Emission from Compact Supermassive Black Hole Binaries

Zoltán Haiman Columbia University

Collaborators

Daniel D' Orazio (Columbia)
Paul Duffell (NYU->Berkeley)
David Schiminovich (Columbia)

Brian Farris (Columbia/NYU)
Andrew MacFadyen (NYU)

Outline

- Introduction & Motivation
- Binary + disk interaction
- Electromagnetic signatures PG1302

SMBH binaries should be common

1. Orbital decay slow:

- pair of BHs can spend a fair fraction of the Hubble time at small (sub-parsec) separations
- gas expected to be delivered to nucleus, can fuel BHs

2. Observational evidence is scant:

- Binary quickly decays to unresolvable separations
- need indirect signatures in spectra, light-curves

3. Indirect searches: variability

- Any emission before, during, and after coalescence is likely variable (t_{orb}<10 yr, if caught close enough)
- EM signatures alone time-domain astronomy
- counterparts to gravitational wave sources (PTA, eLISA)

Active BH pairs in galactic nuclei

Add second BH to standard AGN model

Hydrodynamics of Binary + Disk system

Three reasons to care about this:

- 1. EM signatures: Is there gas near (few R_s) of the BHs?
 - What is the mode of the accretion?

affects observability through total luminosity, spectral shape, variability

- 2. Orbital decay: How long does binary spend at each orbital separation?
 - Can BHs merge in a Hubble time?

affects observability through distribution of separations, periods

3. Gravitational waves: can waveforms be modified by gas?

Outline

- Introduction & Motivation
- Binary + disk interaction
- Electromagnetic signatures PG1302

Hydrodynamics of Binary + Disk system

Three regimes based on mass ratio $q=M_1/M_2$

2D Hydrodynamical Simulations

D'Orazio, ZH & MacFadyen (2013)
Farris, Duffell, MaFadyen, ZH (2014, 2015a,b)
D'Orazio et al. 2015 (in prep)

- Use moving-mesh [AMR] grid code DISCO
- 2D, hydrodynamics only (no GR or MHD)
- α -viscosity (α =0.1)
- Cooling (rad. diffusion) + heating (viscosity, shocks)
- BHs are on the grid (but not yet "live")
- Initial Shakura-Sunyaev disk 0 ≤ r ≤ 100a_{bin}
- \rightarrow vary mass ratio over expected range $q=M_1/M_2=10^{-4}-1$
- → run for ~10,000 binary orbits (>viscous time, steady-state)
- > study morphology, mass accretion rate inside cavity

Binary-disk interaction

Abrupt change in behavior at q~0.05

Origin of transition: loss of stable orbits

Restricted 3-body orbits: morphology similar to hydro

D'Orazio et al. 2015, in prep

Abrupt change in behavior for q > 0.05

A "phase transition":

- (1) Accretion rate becomes strongly variable
- (2) Annular gap \rightarrow central cavity
- (3) Circumbinary disk becomes strongly lopsided
- (4) Strong eccentricity growth for binary

Accretion rate never suppressed

Accretion rate is same (or enhanced) compared to single BH

Secondary out-accretes the primary (by factor of up to 20)

Outline

- Introduction & Motivation
- Binary + disk interaction
- Electromagnetic signatures PG1302

Thermal Emission from Cavity

Farris et al. (2015a,b) strong accretion all the way through merger

$$q = M_2/M_1 = 1$$

Surface density

Surface luminosity: shocks in streams and minidisks

Composite Spectrum

Farris et al. (2015b)

- Spectrum brighter, harder, variable compared to single BH
- opposite of some previous expectations based on empty cavity!

bolometric luminosity varies, tracks accretion

periodic spectral variability at high energies (~6 t_{orb})

PG1302-102

Bright z=0.3 quasar $M_{bh}=10^{8.3}-10^{9.4} M_{\odot}$ a=0.01 pc (280 R_S) ±14% variability with 5.16 ± 0.2 yr period (in 250,000 quasars)

Is the sinusoidal modulation caused by relativitistic boost, not hydrodynamics?

D'Orazio, Haiman, Schiminovich (Nature, 2015)

Requirements for Doppler boost

Observed ±14% modulation expected if:

- Total mass large $(M_{tot} > 2 \times 10^9 M_{\odot})$
- Mass ratio low ($q < 0.2 \rightarrow q < 0.05$ from hydro)
- Luminosity mostly from secondary (>90% → 0.03<q< 0.1)
- Not too far from edge-on (±30°)

How can we verify / falsify Doppler boost hypothesis?

```
\Delta F_{v}^{\text{obs}}/F_{v}^{0}=(3-\alpha)(v/c)\cos\theta\sin i

Optical (V-band): \alpha \approx 1.1 \rightarrow 3-\alpha \approx 1.9

UV (~0.2 µm): \alpha \approx -2 \rightarrow 3-\alpha \approx 5
```


 \rightarrow clear robust prediction: $\Delta F/F_{(UV)} \approx 2.6 \times \Delta F/F_{(opt)}$

Archival UV data consistent with boost

July 17, 1992 (HST FOS) --- NUV
Aug 21, 2001 (HST STIS) --- FUV
Mar 8, 2008 and Apr 6, 2009 (GALEX) --- FUV/NUV
Jan 28, 2011 (HST COS) --- FUV

A binary overcame the final pc bottleneck! OK, but who cares?

A binary overcame the final pc bottleneck! OK, but who cares?

Conclusions

- 1. Binaries can be bright: gas accretion rate into cavity via streams is not reduced by the binary "propeller"
- 2. Accretion onto minidisks strongly periodic for $q \ge 0.05$
- 3. Period dominated by lump in cavity, $t = few \times t_{orb}$, for $q > \sim 0.3$
- 4. Migration: periodic sources with t_{orb} < 10 yr not rare
- 5. PG 1302 optical periodicity consistent with ~1 or 4 yr binary
- 6. UV + optical data favors 4 yr orbital period, arising from Doppler-boosted emission from secondary in circular orbit