Results on light dark matter particles with a low threshold CRESST-II detector

Achim Gütlein

Institute for High Energy Physics Austrian Academy of Sciences

28th Texas Symposium on Relativistic Astrophysics 16.12.2015

Hints for the existence of dark matter

- Hints for the existence of dark matter on several length and time scales
- Precise measurement of temperature fluctuations of cosmic microwave background
- $\rightarrow\,$ Dark matter contribution: $\sim 27\,\%$
 - Nature and origin of dark matter remains unknown
 - Promising candidate: Weakly Interacting Massive Particle (WIMP)
- \rightarrow Masses of $\mathcal{O}(\text{GeV})$ to $\mathcal{O}(\text{TeV})$
 - Several models for low masses (e.g., asymmetric dark matter)

The CRESST collaboration

Cryogenic Rare Event Search with Superconducting Thermometers

Laboratori Nazionali del Gran Sasso

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

\sim 40 scientists from 6 institutions

Achim Gütlein (HEPHY)

Results on light dark matter

16.12.2015 3 / 15

The CRESST experiment

- Direct dark matter search
- Aim: observation of dark matter particles scattering off detector material
- Located at Laboratori Nazionali del Gran Sasso (LNGS) in Italy
- Rare event search
- \rightarrow Massive shielding (Pb, Cu, PE)
- \rightarrow Underground (\sim 3000 m.w.e)
 - CRESST-II Phase 2: 18 detector modules operated from June 2013 to August 2015
- ightarrow This talk: Results from blind analysis of one module (best threshold \sim 300 eV)

Detector module

- Target crystal: scintillating calcium tungstate (CaWO₄), mass: 250 - 300 g
- \rightarrow Measurement of deposited energy (via phonon signal)
 - Separate light detector (silicon on sapphire, SOS) for measurement of scintillation light

Detection principle

- Both detectors equipped with Transition Edge Sensors (TES)
 - Superconducting tungsten film
 - Stabilized at steep phase transition
 - Deposited energy leads to small temperature rise of TES.
 - $\rightarrow\,$ Measurable resistance change induced by small temperature rise
- Simultaneous measurement of deposited energy and scintillation light
- $\rightarrow\,$ Different amounts of scintillation light for electron and nuclear recoils
- $\Rightarrow\,$ Rejection of $\beta/\gamma\,$ backgrounds
- \rightarrow Light yield: Ratio of measured scintillation light and deposited energy

Light-yield/energy plane

ightarrow CRESST collaboration, G. Angloher, et al., arXiv: 1509.01515 (2015), submitted to EPJ C

Achim Gütlein (HEPHY)

Results on light dark matter

Energy spectrum at low energies

- Dominating feature: accidental irradiation with ⁵⁵Fe source
- Cosmogenic activation: 179 Ta (EC decay to 179 Hf; binding energy M₁)
- External copper fluorescence
- Flat background down to threshold
- $\lesssim 1 \, \text{keV}$: Influence of finite survival probability

Event selection

- \bullet Acceptance region (yellow) from threshold (300 eV) to 40 keV
- Different choices of upper bound on light yield lead to similar results
- $\rightarrow\,$ Accepted events (red) compatible with leakage from β/γ band

Achim Gütlein (HEPHY)

Accepted events

- \bullet Accepted events compatible with leakage from β/γ band
- ightarrow Conservative limit determined by Yellin's optimum-interval method
 - \bullet Mn x-rays: No effect for dark matter masses $\lesssim 3\,GeV/c^2$

Achim Gütlein (HEPHY)

Limit on light dark matter

• Best limit for dark matter masses $\lesssim 2 \text{ GeV}/c^2$ • Exploring new parameter space below $1 \text{ GeV}/c^2$

Achim Gütlein (HEPHY)

Results on light dark matter

Summary

- $\bullet\,$ Blind analysis of detector with lowest threshold of $\sim 300\,eV$
- Exposure: $\sim 51 \, \mathrm{kg}\mathrm{-days}$
- $\bullet\,$ Average background rate of $\sim 8\,keV^{-1}\,kg^{-1}\,day^{-1}$
- \rightarrow Further details: CRESST collaboration, G. Angloher, et al., arXiv: 1509.01515 (2015), submitted to EPJ C
 - Below $\sim 6\,GeV/c^2$: better than 2014 limit obtained with different detector (threshold 600 eV, bg-rate: $\sim 3.5\,keV^{-1}\,kg^{-1}\,day^{-1}$)

 \rightarrow CRESST collaboration, G. Angloher, et al., EPJ C 74, 3184 (2014), arXiv:1407.3146 (2014)

\Rightarrow Energy threshold is key for light dark matter

Outlook: New detector module for CRESST-III

- Optimized for low energy threshold (goal $\lesssim 100\,{
 m eV})$
- Target mass 25 g (10x less than for CRESST-II)
- Fully scintillating housing (scintillating foil, CaWO₄ sticks)
- Instrumented sticks to reject events in sticks (phonon detector only)
- First tests very successful (threshold goal exceeded)
- ightarrow Start of CRESST-III beginning of 2016

Outlook: Projection for CRESST-III Phase 1

- Energy threshold 100 eV
- Exposure 50 kg-days (10 modules operated for one year)
- ullet Background rate: $\sim 3.5\,{
 m keV^{-1}\,kg^{-1}\,day^{-1}}$

→ CRESST collaboration, G. Angloher, et al., arXiv: 1503.08065 (2015) Achim Gütlein (HEPHY) Results on light dark matter

Outlook: Projection for CRESST-III Phase 2

- Energy threshold 100 eV
- Exposure 1000 kg-days (100 modules operated for two years)
- Background rate: $\sim 3.5 \times 10^{-2} \, \text{keV}^{-1} \, \text{kg}^{-1} \, \text{day}^{-1}$

Backup slides

Energy reconstruction

Origin	E _{lit} [keV]	E _{fit} [keV]	$\frac{E_{fit} - E_{lit}}{E_{lit}}$ [%]	σ [eV]
$Hf M_1$	2.601	2.687 ± 0.020	+3.3	79 ± 1
$Mn\;K_\alpha$	5.895	5.972 ± 0.002	+1.3	101 ± 1
$Mn K_{\beta}$	6.490	6.562 ± 0.003	+1.1	105 ± 2
$Cu\;K_{lpha}$	8.041	8.133 ± 0.034	+1.1	115 ± 2

Achim Gütlein (HEPHY)

Detector-module designs

Conventional design

Stick design

Carrier design

Beaker design

Detector module with low threshold

- Trigger threshold determined by electric signals injected into the TES
- ightarrow Module with best threshold: \sim 300 eV
- Signal-survival probability estimated by artificial pulses (measured baseline noise + pulse template)
- $\rightarrow\,$ Survival probability $\gtrsim 10\,\%$ at trigger threshold

ightarrow CRESST collaboration, G. Angloher, et al., arXiv: 1509.01515 (2015), submitted to EPJ C

Achim Gütlein (HEPHY)

Results on light dark matter

Data analysis - signal survival-probability

- Rate cut removes periods of abnormal high trigger rates
- Stability cut both detectors (phonon, light) in operating point
- Quality cut remove pulses where correct energy reconstruction is not guaranteed
- Rise-time cut removes events in TES-carrier crystal
- \rightarrow Cuts defined on non-blind data set (not used for limit)
- ightarrow Signal survival-probability determined by artificial pulses

2014 result

- $\bullet\,$ Detector with smallest background rate: $\sim 3\,$ keV $^{-1}\,\text{kg}^{-1}\,\text{day}^{-1}$
- Energy threshold $\sim 600\,{
 m eV}$
- Exposure \sim 29 kg-days
- Analysis of non-blinded data set
- ightarrow Partial exclusion of WIMP interpretation of excess observed in 2011

Conventional modules - α decays on surfaces

- Origin ²²⁶Rn
- 210 Po ightarrow 206 Pb (103 keV) + lpha (5.3 MeV)
- Bronze clamps not scintillating
- \Rightarrow Dangerous background source