Broad-band properties of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

Luigi Foschini,
M. Berton, A. Caccianiga, S. Ciroi, V. Cracco, B. M. Peterson, E. Angelakis,
V. Braitto, L. Fuhrmann, L. Gallo, D. Grupe, E. Järvelä, S. Kaufmann,
S. Komossa, Y. Y. Kovalev, A. Lähteenmäki, M. M. Lisakov, M. L. Lister,
S. Mathur, J. L. Richards, P. Romano, A. Sievers, G. Tagliaferri, J. Tammi,
O. Tibolla, M. Tornikoski, S. Vercellone, G. La Mura, L. Maraschi, P. Rafanelli

Narrow-Line Seyfert 1 Galaxies

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FWHM H(\beta)</td>
<td>< 2000 km/s</td>
</tr>
<tr>
<td></td>
<td>Goodrich 1989</td>
</tr>
<tr>
<td>[O\textsc{iii}]/H(\beta)</td>
<td>< 3</td>
</tr>
<tr>
<td></td>
<td>Osterbrock & Pogge 1985</td>
</tr>
<tr>
<td>Bump Fe\textsc{ii}</td>
<td>Yes ☑️ No obscuration</td>
</tr>
<tr>
<td></td>
<td>Osterbrock & Pogge 1985</td>
</tr>
<tr>
<td>Mass Black Hole</td>
<td>(10^6)-(10^8) M(_\odot)</td>
</tr>
<tr>
<td></td>
<td>Peterson, Mathur, Decarli, Marconi, Bentz, Denney, Vestergaard, Woo, Wandel, Calderone…</td>
</tr>
<tr>
<td>Accretion rate</td>
<td>0.1-1 Eddington</td>
</tr>
<tr>
<td></td>
<td>Boroson & Green 1992; Boller+ 1996</td>
</tr>
<tr>
<td>Host galaxy</td>
<td>spiral, mostly barred</td>
</tr>
<tr>
<td></td>
<td>Crenshaw+ 2003; Deo+ 2006</td>
</tr>
<tr>
<td>Star formation</td>
<td>Yes, high</td>
</tr>
<tr>
<td></td>
<td>Sani+ 2010; Caccianiga+ 2015</td>
</tr>
<tr>
<td>Age</td>
<td>Young, < Gyr</td>
</tr>
<tr>
<td>Radio</td>
<td>7% is radio-loud</td>
</tr>
<tr>
<td></td>
<td>Komossa+ 2006; Cracco+ 2015</td>
</tr>
<tr>
<td></td>
<td>4% is radio-loud ((z < 0.35))</td>
</tr>
<tr>
<td>(\gamma) rays</td>
<td>First detections by Fermi LAT</td>
</tr>
<tr>
<td>(MeV-GeV)</td>
<td>11 sources to date, increasing</td>
</tr>
<tr>
<td></td>
<td>Abdo+ 2009 (3 articles); Foschini+ 2010; …</td>
</tr>
<tr>
<td></td>
<td>Earlier attempt (negative) with Whipple at E > 400 GeV (Falcone+ 2004).</td>
</tr>
</tbody>
</table>
Fig. 7.—Interpretive diagram showing how PC1-PC2 plane provides basis for classification of AGNs

Boroson (2002)
Sample selection (42 sources)

From literature:

Criteria:
- $\text{FWHM H}_\beta > 2000 \text{ km/s} + 10\% = 2200 \text{ km/s}$
- $\text{[OIII]}/H_\beta < 3$
- Bump Fe II
- Radio loudness $= S_{5\text{GHz}}/S_{440\text{nm}} > 10$
- $\alpha < 0.5$, $S_\nu \propto \nu^{-\alpha}$ [radio spectrum flat or inverted]
- Sources with only 1.4 GHz measurement (i.e. no spectral information) were also included (20/42)

Comparison samples:
- 57 flat-spectrum radio quasars (FSRQs) + 31 BL Lac Objects
Related and Ongoing Works

Related works:

- Angelakis+ (2015): intensive radio monitoring of 4 γ-NLS1s
- Berton+ (2015): search for the parent population - See previous talk
- Caccianiga+ (2014): study on individual source
- Caccianiga+ (2015): infrared properties of the present sample
- Gu, Chen, Komossa,… (2015): parsec scale radio emission of RLNLS1s
- Järvelä+ (2015): MW study of a sample of RLNLS1 - See previous talk
- Komossa+ (2006b): study on individual source
- Richards+ (2015), Richards & Lister (2015): parsec scale radio emission of RLNLS1s

Ongoing observations:

- Multifrequency Radio Survey (PI Lähteenmäki)
- VLA/VLBA survey (PI Richards)
- Effelsberg Radio monitoring (PI Angelakis)
- EVN observation on individual source (PI Caccianiga)
Central Black Hole Mass & Accretion Disc Luminosity

Masses NLS1 calculated by using line dispersion σ less affected by:
- inclination,
- Eddington ratio,
- line profile.
(Peterson+ 2004, Collin+ 2006)

- **FSRQ**
- **BL Lac (↓ upper limits)**
- **RLNLS1**
- **γ-NLS1**
Observational Characteristics: Gamma rays

7/42 (17%) sources detected at high-energy gamma rays (0.1-100 GeV)

Average spectral index 1.6 ± 0.3 (median 1.7)
One outlier: J0849+5108 hard spectrum (1.00-1.18)

Fermi LAT samples (Ackermann+ 2011):
FSRQs: 1.4 ± 0.2
LSP BL Lacs: 1.2 ± 0.1
ISP BL Lacs: 1.1 ± 0.1
HSP BL Lacs: 0.9 ± 0.2

More detections after the present work:
- one source in the present sample:
 - J1644+2619 (D’Ammando+ 2015) 8/42 (19%)
- three sources not in the present sample:
 - J1222+0413 (Yao+ 2015)
 - J1443+4725 (Liao+ 2015) steep radio spectrum
 - J2314+2243 (Komossa+ 2015) steep radio spectrum
Observational Characteristics: X rays

38/42 (90%) sources detected at X rays (0.3-10 keV)

Average spectral index 1.0 ± 0.5 (median 0.8)

Comparison samples:
FSRQs: 0.58
BL Lac Objects: 1.2
Broad-Line Seyfert 1 (BLS1): 1.1
Narrow-Line Seyfert 1 (NLS1): 1.7

No Fe Kα line except for J0324+3410 (cf Abdo+ 2009)
E = 6.5 ± 0.1 keV
EW = 91 eV

43 radio-quiet NLS1s
50 Broad-Line Seyfert 1 (BLS1) from Grupe+ (2010).
Observational Characteristics: Infrared ($WISE$)

$WISE$ Gamma-ray Strip (WGS) (Massaro+ 2012)
AGN Wedge (Mateos+ 2012, 2013)

![Graph showing AGN Wedge and Starburst regions with WISE bands W1, W2, W3, W4 values: W1 = 3.4 μm, W2 = 4.6 μm, W3 = 12 μm, W4 = 22 μm.]

$q_{22} = \log \left(\frac{S_{22 \mu m}}{S_{1.4 \text{ GHz}}} \right)$.

$\alpha_{1.4} = -\frac{\log \left(\frac{S_{1.4 \text{ GHz}}}{S_{22 \mu m}} \right)}{\log \left(\frac{\nu_{1.4 \text{ GHz}}}{\nu_{22 \mu m}} \right)}$

Caccianiga+ 2015

IR galaxies
BZQ
RL NLS1

28th Texas Symposium, Disks & Jets Session, 17 December 2015, Geneva
Observational Characteristics: Radio

21-1/42 (48%) sources have only 1.4 GHz measurement
(J0953+2836 observed at 9 GHz by Richards & Lister 2015)
12/42 (28%) sources were detected <1.4 GHz (74-843 MHz)

5/42 sources were targets of intensive monitoring and MW Campaigns
(Effelsberg, Metsähovi, RATAN-600, IRAM, MOJAVE, TANAMI)

J0324+3410, J0849+5108, J0948+0022, J1505+0326 ≠ Angelakis+ (2015)

7/42 sources showed inverted spectral index

Average spectral index 0.1 ± 0.3 (median 0.3)

Comparison:
Abdo+ (2010) (Fermi LAT Bright AGN Sample) ≠ 0.03 ± 0.23 [1-100 GHz]
Hovatta+ (2014) [8-15 GHz] ≠ FSRQs (133) = -0.22 ≠ BL Lacs (33) = -0.19
Tornikoski+ (2000) [2.3-8.4 GHz] ≠ BL Lacs + HPQ = -0.13 ≠ LPQ = 0.05
Nieppola+ (2007) 398 BL Lacs ≠ [5-37 GHz] = -0.25 ≠ [37-90 GHz] = 0.0
Observational Characteristics: Radio
VLBA 2cm, MOJAVE,
analysis by Y. Y. Kovalev in Foschini+ (2011)

J0948+0022
Changes in radio polarisation properties before
the γ-ray outburst 2010 July 7-10

- EVPA swing $\sim 90^\circ$
- Polarisation intensity drop
Observational Characteristics: Short Timescale Variability

<table>
<thead>
<tr>
<th>Name</th>
<th>γ rays</th>
<th>X-rays</th>
<th>$u\omega_2$</th>
<th>$u\omega m_2$</th>
<th>$u\omega_1$</th>
<th>u</th>
<th>b</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0134 − 4258</td>
<td>−0.071 ± 0.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J0324 + 3410</td>
<td>0.10 ± 0.03</td>
<td>−0.079 ± 0.012</td>
<td>0.09 ± 0.03</td>
<td>0.10 ± 0.04</td>
<td><0.43</td>
<td>7 ± 3</td>
<td><0.7</td>
<td><0.28</td>
</tr>
<tr>
<td>J0849 + 5108</td>
<td>12 ± 8</td>
<td><18</td>
<td></td>
<td></td>
<td><0.27</td>
<td>4.1</td>
<td>6.1</td>
<td>3.6</td>
</tr>
<tr>
<td>J0948 + 0022</td>
<td><0.8</td>
<td><0.21</td>
<td>0.12 ± 0.07</td>
<td>0.09 ± 0.05</td>
<td>0.08 ± 0.03</td>
<td>0.07 ± 0.03</td>
<td>0.06 ± 0.03</td>
<td>0.05 ± 0.03</td>
</tr>
<tr>
<td>J0953 + 2836</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1031 + 4234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1038 + 4227</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1047 + 4725</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1102 + 2239</td>
<td></td>
<td></td>
<td><0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1238 + 3942</td>
<td></td>
<td></td>
<td><0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1505 + 0326</td>
<td>1.3 ± 0.5</td>
<td>(6.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1629 + 4007</td>
<td>−0.12 ± 0.02</td>
<td>(3.5)</td>
<td><0.49</td>
<td></td>
<td><0.17</td>
<td><0.23</td>
<td><0.09</td>
<td></td>
</tr>
<tr>
<td>J2007 − 4434</td>
<td>6 ± 2</td>
<td>(12)</td>
<td><0.19</td>
<td><0.12</td>
<td><0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. For each source, it is indicated the τ [days] and, in the second row between parentheses, the significance of the flux change [σ].

References. (a) Paliya et al. (2014); (b) Foschini (2011a).

J0948+0022:
~2 min variability with XMM (to be confirmed because SPF)
2-3 min variability optical polarisation (Itoh+ 2013)

1 h = 0.042 d
6 h = 0.25 d
Observational Characteristics: Spectral Variability

J0948+0022

Synchrotron (jet)

High State
(2012 Dec 30)

Low State
(2009 May 15)

Multicolor BB (disk)

IR excess: host galaxy?
Observational Characteristics: Monochromatic Luminosities

- FSRQ
- BL Lac
- RLNLS1 (upper limits)
- γ-NLS1

28th Texas Symposium, Disks & Jets Session, 17 December 2015, Geneva
Calculated Characteristics: Jet Power
Unification of Relativistic Jets (Foschini 2011-2014)

Before Fermi/LAT

Log Jet Luminosity vs. Log Disc Luminosity

- Red dots: FSRQs
- Blue squares: BL Lacs
- Yellow triangles: Black Holes
- Pink stars: Neutron Stars

HLX-1
Unification of Relativistic Jets (Foschini 2011-2014)

After Fermi/LAT

- FSRQs
- BL Lacs
- γ-NLS1s

Log Jet Luminosity vs. Log Disc Luminosity

Black Holes
Neutron Stars

HLX-1

Radiation Pressure Dominated disk

\[\log P_{jet,rad} \propto \frac{17}{12} \log M \]

Advection Dominated Accretion Flow

Gas Pressure Dominated disk

\[\log P_{jet,rad} \propto \frac{17}{12} \log M + \frac{1}{2} \log \frac{L_{disk}}{L_{Edd}} \]
Unification of Relativistic Jets (Foschini 2011-2014)

Conclusions

- RLNLS1s seem to be the low mass tail of FSRQs;

- Different observational characteristics (e.g. lines width, variability, jet power) seem to be the effect of a relatively small mass of the central black hole;

- Jet power: once renormalised for the mass, it is comparable with blazars;
 - Normalisation depends mostly on the mass and less on the accretion rate (theory Heinz & Sunyaev 2003; confirmed by observations Foschini 2011-2014);

- The only real difference seems to be about the host galaxy, which shows a strong star formation (see also Caccianiga+ 2015);

- Small number of known RLNLS1s: why?
 - Low observed power? Comparable to BL Lacs, but latter brighter at X-rays (indeed, X-ray selected)
 - Intermittent jet?
 - ⚔️ radiative instability (Czerny+ 2009)
 - ⚔️ aborted jet (Ghisellini+ 2004)
 - Actual small number? Hopes from new facilities (e.g. SKA, Berton+ 2015)