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Pulsar glitches
Sudden	‘jumps’	in	frequency,	with		

Increase	in	spin-down	rate	

Relaxations	timescales	from	minutes	

to	months

�⌦

⌦
⇡ 10�10 � 10�5
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Vortex dynamics

Superfluids	rotate	by	forming	quantised	vortices	

Vortex	density	determines	spin	:	vortices	must	move	

out	to	spin	down	the	fluid!	

FREE : �ijkk̂j(vv
k � vn

k) +R(vi
c � vi

v) = 0

Magnus Force

PINNED : �ijkk̂j(vv
k � vn

k) + F i
p = 0
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Vortex dynamics
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out	to	spin	down	the	fluid!	

FREE : �ijkk̂j(vv
k � vn

k) +R(vi
c � vi
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Magnus Force
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If vortices cannot move out the 
superfluid cannot spin down.                 
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What triggers a glitch?

Starquakes	(Ruderman	69,	76)	

Hydrodynamical	instabilities																						
(Andersson	et	al.	2003,	Glampedakis	&	Andersson	2009)	

Vortex	avalanches	(Cheng	et	al.	88,	Alpar	et	al.	96)

See Haskell & Melatos 2015 for a review
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• There is a correlation between sizes and waiting times, which is absent in the
avalanche model. Such a correlation is however di�cult to reconstruct from a
small number of glitches, so the model cannot be ruled out by its absence in
the current data. Future observations would, of course, be able to rule it out.

Andrew: elaborate more?

5.3. Gross-Pitaevskii simulations

The cellular automaton approach described above derives from the impossibility to
simulate the collective behaviour of the ⇡ 1018 vortices which thread a NS interior.
However, the choice of the ’rules’ that govern the automaton can be informed by
studying what smaller scale simulations teach us on the behaviour of vortices in a
spinning down container. To study this problemWarszawski and Melatos cite evolve
a two-dimensional superfluid in a rotating container by solve the two dimensional
dissipative Gross-Pitaevskii equation (GPE):
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where ⌦ is the angular velocity of the frame (i.e. of the crust),  (xi, t) is the su-
perfluid order parameter, V (xi) the external potential (which will represent both
the container, and the pinning sites), µ the chemical potential g parametrises the
strength of the self interaction, and the angular momentum operator is given by
L̂
z

= �ih̄ẑ@/@�. The term ��@ /@t is a phenomenological dissipative term.
The GPE quite accurately describes the dynamics of systems with weak inter-

actions, such as Bose Einstein Condensates (BECs), and has been successfully used
for a variety of analytical and numerical studies. To represent the typical situation
in a NS crust the potential is taken to be a trapping potential which represents the
container and several ’spikes’ to represent the pinning sites, of the form:
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where V
trap

is the background potential, R
i

is the position of the pinning sites and
V
i

and � parametric their strength and width. The response of the container to
vortex movement is calculated according to:
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where I
c

is the moment of inertia of the crust and N
EM

the external electromag-
netic spin down torque. Warszawski and Melatos cite carry out a series of numer-
ical experiments with di↵erent parameters. In general collective motion of vortices
is observed, with vortex avalanches giving rise to glitches in the spin-down and dis-
tributions of sizes which obey power laws, with exponentially distributed waiting
times. The main conclusions can be summarised as follows:
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where I
c

is the moment of inertia of the crust and N
EM

the external electromag-
netic spin down torque. Warszawski and Melatos cite carry out a series of numer-
ical experiments with di↵erent parameters. In general collective motion of vortices
is observed, with vortex avalanches giving rise to glitches in the spin-down and dis-
tributions of sizes which obey power laws, with exponentially distributed waiting
times. The main conclusions can be summarised as follows:

Gross Pitaevskii simulations:

V = Vtrap +
X

Vi[1 + tanh(⇥(r �Ri)]

Good	description	of	BEC	dynamics	in	which	interactions	are	weak	

Predict	power-law	distributions	for	event	sizes,	and	exponentials	for	waiting	

times	

	Consistent	with	most	pulsars	(Melatos	et	al.	2008)	but	not	the	Crab!	

(Espinoza	et	al.	2014)

(Warszawski	&	Melatos,	2008,	2013)
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(Courtesy of James Douglass)
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Can an avalanche propagate in a NS?
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Can an avalanche propagate in a NS?

pinning sites1010

vortex avalanches or 
vortex creep ?
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Vortex Motion:

✏ijkk̂j(v
L
k � vnk) +R(vip � viL) + F i + �i = 0

Magnus 

Drag Vortex-Vortex 

Pinning 

R ⇡ 10�4
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Vortex Motion:

✏ijkk̂j(v
L
k � vnk) +R(vip � viL) + F i + �i = 0

Magnus 

Drag Vortex-Vortex 

Pinning 

F i = �riV

R ⇡ 1

R << 1

Kelvons in the crust

Phonons in the crust

R ⇡ 10�4

in the core
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N-body	(Barnes-Hut)	code	[Douglass,	Melatos	&	BH,	in	preparation]

Analytic	cross	section																		

(Sedrakian	95,	BH	&	Melatos,	2015	)
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N-body results

10^4 vortices
a

R ⇡ 0.3
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(Douglass, Melatos & BH in preparation)

N-body results

10^4 vortices
a

R ⇡ 0.3
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Analytic Results:

a

� =
�⌦crit ��⌦

�⌦crit
⇡ 0.001� 0.1

(BH & Melatos, 2015)
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Equations of motion

�̇n(r̃) = �nv
B(�p � �n)
(1� ⇤n � ⇤p)

�̇p(r̃) = ��nv
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⇥p

B(�p � �n)
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B =
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1 +R2

A

nv = f(T,⌦p � ⌦n)
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Equations of motion
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Important in the crust!
(Chamel 2012, Andersson et al. 2012)

 (Newton, Berger & BH 2015)
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4 B.Haskell & D.Antonopoulou

Figure 2. In the left panel we show the effect of changing the size of the unpinning region from 5 m to 80m at the base of the crust.
We switch from a background B = 5 × 10−9 to B = 8 × 10−7 during the glitch. The size of the region has a strong impact on the size
of the glitch, but little impact on the change in spin-down rate. In the middle panel we show how the increase in the spin down rate
becomes larger if one increases the value of B during the glitch, in an 80 m region, with a background B = 5 × 10−9. As B increases
(and the rise time decreases) ∆ν/ν passes from 0.9% for B = 8 × 10−7, to 1.3% for B = 9.5 × 10−7, and finally for B = 2 × 10−6 one
has a clear exponential relaxation. Finally in the right panel we have a glitch due to the increase in B from 5 × 10−12 (which mimics
perfect pinning) to 5× 10−7 over 8 m. The glitch appears as a step in frequency with no significant recovery. In all cases we consider a
star rotating at a frequency of ν = 0.11 Hz, and the pre-glitch spindown has been removed. The low spin rate leads to long rises of ≈ 1
day, which would be much shorter in a faster pulsar (< 1 hour for the Crab)

glitches in Vela will produce smaller glitches in hotter stars,
such as magnetars and young pulsars.

To test this hypothesis we use the code developed by
Haskell et al. (2012), and solve the equations (1-2) as in the
models considered for the Vela, but using a spin frequency
typical for magnetars and a higher background MF param-
eter B̃cr in the crust. The latter is to account for a larger
vortex creep rate, due to the magnetar’s higher tempera-
ture. This leads to a smaller region of the crust that has not
relaxed and can participate in the glitch. We use B̃gl = 10−3

for the rise. The results can be seen in table 1, in which we
show the size of the glitch and the step in frequency deriva-
tive after 1 day and after 50 days. As we can see the results
are consistent with the kind of glitches seen in magnetars.
Furthermore we predict that one should be able to observe
stronger increases in spin-down rate on short timescales, if
the MF in the outer core is weak, as could be the case if
protons are in a type II superconducting state (Link 2012).
Better coverage of AXP glitches thus has the potential to
constrain the MF parameters and determine the nature of
the pairing in the NS interior.

3 SLOW “STEP LIKE” GLITCHES

Let us now turn our attention to glitches that are associated
with “permanent” increases in the spin down rate but with
no appreciable relaxation. Our assumption is that this kind
of glitch is not due to the vortices that have accumulated
close to the maximum of the critical lag, but rather involves
regions far from the maximum, in which vortices are “creep-
ing” out. While the sudden release of vortices close to the
maximum of the critical lag could excite Kelvin waves and
lead to short coupling timescales, in the case we consider
now the coupling timescale of the region giving rise to the
glitch would decrease compared to that of the crust, but still
be longer than the coupling timescale of the core, as shown
in the right panel of figure 1. The core will thus not decou-
ple and give rise to a visible relaxation, but rather the crust

will be decoupled on long timescales, leading to what will
appear as a permanent increase in the spin-down rate.

We will study this problem by once again using the
code of Haskell et al. (2012) to solve the equations in (1-2).
First of all we allow for the crust to reach a steady state,
in which the two fluids are spinning down together with

a lag between the two of ∆Ω ≈ Ω̇
2ΩB̃cr

. In this background

configuration we use B̃cr = 5×10−9. We now take a region of
varying thickness at the base of the crust and switch the MF
parameter to B̃gl = Bcr ≈ 10−6. This will be the situation
if, for example, a sudden event, such as a crust quake or a
vortex avalanche (Ruderman 1969; Melatos & Warszawski
2009) frees the vortices in this region, leading to ξ ≈ 1.

The results can be seen in figure (2). In the left panel
we see that the size of the region over which vortices are
freed (i.e. the extent of the avalanche or quake) has a strong
influence on the size of the glitch, but little influence on
the increase in spin-down rate. This can be understood if
one considers the equations of motion in (1-2) locally in
the crust, neglecting differential rotation and electromag-
netic spin down. From angular momentum conservation we
see that the size of the glitch ∆ΩG will depend on the lag
∆Ω between the superfluid and the charged component via
∆ΩG =

Ig
Ic
∆Ω, where Ig is the moment of inertia of the

regions in which vortices unpin, while Ic is the moment of
inertia of the region that is coupled fast enough to follow
the rise of the glitch. The size of the region in which vor-
tices unpin thus determines Ig and is crucial for the step
size. The moment of inertia coupled during the glitch, Ic,
is essentially the moment of inertia of the whole core. The
rest of the crust will be coupled on a longer timescale com-
pared to that of the rise, given that B̃cr ≪ B̃gl, and will
thus decouple and only recouple slowly on a timescale given
by equation (3). If this timescale is long compared to the
timescale on which the post-glitch relaxation is observed,
the crust will be decoupled during the whole period and the
increase in the spin down rate will appear permanent. The
star will spin down faster by a fraction ≈ Icr/Ic, with Icr

c⃝ 0000 RAS, MNRAS 000, 000–000

Hydrodynamical Response:

(BH et al. 2012, BH & Antonopoulou 2014)
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	draw	number	of	unpinned	vortices	and	size	of	unpinning	

region	from	a	power-law	distribution	

	draw	waiting	time	between	unpinning	events	from	an	

exponential	distribution

	Assume	realistic	profile	for	pinning	force

�nv

Hydrodynamical Response:

B Iu ⇡ I
� � 1

�MAX
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⌧w = 0.1 days

⌧w = 0.1 days

Size	distributions	deviate	from	power-laws	for	

low	sizes,	consistent	with	distribution	of	Crab	

glitches	(Espinoza	et	al.	2014)	

Steeper	microscopic	power-law	indices	lead	to	

larger	glitches	

Higher	mass	stars	have	more	small	glitches

k = �1.5

k = �1.05
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⌧w = 0.1 days

(BH,	in	preparation)
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Conclusions

	Vortex	avalanches	can	propagate	in	NS	interiors										
(need	better	constraints	on	superfluid	drag	and	the	role	of	tension)

Coupling	of	the	fluid	to	vortex	motion	is	crucial													
(size	distributions	deviate	from	power-laws)
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R
ext

= R
in

R
ext

= 0

[BH & Melatos, in preparation]


