High redshift BAO from BOSS and eBOSS

Timothée Delubac

Texas Symposium
December 14th, 2015
Questions I want to address

- How did we measure BAO using Lyman-alpha forests in BOSS?
- What are the resulting constraints on cosmological models?
- How are we going to improve those constraints using Emission Line Galaxies (ELGs) in eBOSS?
BOSS maps the Universe to observe the BAO

- The Baryon Oscillation Spectroscopic Survey (BOSS) has acquired:
 - 1.5M galaxies (0.15< z <0.7)
 - 160k quasars (2.1< z <4.5)
BAO are observed statistically in the correlation function of galaxies.
BAO are observed statistically in the correlation function of galaxies
BAO are observed statistically in the correlation function of galaxies

\[r^2 \xi(r) \]

\[r(h^{-1}\text{Mpc}) \]

Anderson et al. (2014)

- Correlation function at \(z = 0.57 \)
 obtained using 690,000 galaxies over 8500 deg\(^2\).
BAO are observed statistically in the correlation function of galaxies

- Correlation function at $z = 0.57$
 obtained using 690,000 galaxies over 8500 deg2.

Anderson et al. (2014)
BAO can be used as a standard ruler

- Observed transversally to the line of sight, it constrains an angle:

\[\theta = \frac{r_s}{(1 + z) D_A(z)} \]
BAO can be used as a standard ruler

- Observed transversally to the line of sight, it constrains an angle:

\[\theta = \frac{r_s}{(1 + z) \bar{D}_A(z)} \]

Depend on the parameters of your model
BAO can be used as a standard ruler

- Observed along the line of sight, it constrains a difference in redshift:

\[\Delta z = \frac{r_s H(z)}{c} \]
BAO can be used as a standard ruler

- Observed along the line of sight, it constrains a difference in redshift:

\[\Delta z = \frac{r_s H(z)}{c} \]

Depends on the parameters of your model
Quasars can be observed at much higher redshift than galaxies
The light of quasars is absorbed during its travel toward us.

- Quasars are used as background light sources.
- Neutral hydrogen creates absorption lines in their spectra.
High z quasar spectra tell us about the HI density along their line of sight.
High z quasar spectra tell us about the HI density along their line of sight.
High z quasar spectra tell us about the H\textsubscript{I} density along their line of sight.

\[(1 + z_{\text{abs}}) \lambda_{\text{Ly} \alpha} \quad \text{Flux} \quad (1 + z_{\text{qso}}) \lambda_{\text{Ly} \alpha} \]

\[\text{Å} \]
High z quasar spectra tell us about the HI density along their line of sight.

\[(1 + z_{abs}) \lambda_{Ly\alpha} \]

\[(1 + z_{qso}) \lambda_{Ly\alpha} \]

\[\text{Ly}\alpha - \text{forest} \]
High z quasar spectra tell us about the HI density along their line of sight

- Transmitted flux fraction:
 \[
 F(\lambda_{\text{obs}}) = \frac{\text{Flux}}{\text{Continuum}} = e^{-\tau}
 \]

- Optical depth:
 \[
 \tau(\lambda_{\text{obs}}) \propto n_{\text{HI}}(z_{\text{abs}})
 \]
Compute the correlation function of the Lyman-alpha forest

- Define a delta field:
\[
\delta_f(\lambda_{rq}, \lambda_{obs}) = \frac{f(\lambda_{obs})}{\text{Cont}(\lambda_{rq}) \bar{F}(\lambda_{obs})} - 1
\]

- Use a trivial estimator:
\[
\hat{\xi}_A = \sum_{i,j \in A} w_i w_j \delta_i \delta_j
\]
\[
\sum_{i,j \in A} w_i w_j
\]

- Use a fiducial cosmology:
\[
(\Omega_m, \Omega_\Lambda) = (0.27, 0.73)
\]
Used BOSS DR11 quasars sample

• Analysis uses ~140,000 quasars with $2.1 < z < 3.5$ over 9,000 deg2

Delubac et al. (2015)
Have a 5 sigma detection of the BAO peak

Delubac et al. (2015)
High redshift space distortion makes the peak bigger in the line of sight

\[r^2 \xi_1 (r) [h^{-2} \text{Mpc}^2] \]

\[r [h^{-1} \text{Mpc}] \]

Delubac et al. (2015)

best fit

fiducial
No evidence for systematic effects at the level of statistical uncertainties

- Systematics that have been considered so far include:
 - Analysis pipeline
 - bias in the fit
 - Metal contaminations
 - Residuals in sky subtraction
 - wavelength dependent flux bias
 - Correlated noise in pixels
 - ...
Obtain model independent constraints on D_A/r_s and D_H/r_s

Delubac et al. (2015)
Numerous cosmological implications including detection of Dark Energy by BAO only

- Purely geometric constraints. Lambda detected form BAO alone at more than 3 sig.

Aubourg et al. (2015)
eBOSS maps the Universe to observe the BAO
eBOSS will use 4 different tracers to improve BOSS constraints

LRGs at z > 0.6
eBOSS will use 4 different tracers to improve BOSS constraints

LRGs at $z > 0.6$

Lyman-alpha quasars at $z > 2.1$
eBOSS will use 4 different tracers to improve BOSS constraints.

LRGs at $z>0.6$

Lyman-alpha quasars at $z>2.1$

Quasars at $0.9<z<2.2$
eBOSS will use 4 different tracers to improve BOSS constraints

LRGs at $z>0.6$

Lyman-alpha quasars at $z>2.1$

ELGs $0.6<z<1.0$

Quasars at $0.9<z<2.2$
ELGs will be the main tracer for DESI, Euclid, PSF, 4MOST…

- For $z>0.8$ the massive population of galaxies is dominated by star forming galaxies.
- ELG spectra display strong emission lines allowing secure estimation of their redshift in short exposure time.
Propose an ELG selection using a Fisher discriminant

\[X_{FI} = \alpha_0 + \alpha_{ur} \times (u - r) + \alpha_{gr} \times (g - r) + \alpha_{ri} \times (r - i) + \alpha_{rz} \times (r - z) + \alpha_{rW1} \times (r - W1) \]

Fisher discriminant

Raichoor, Comparat, Delubac et al. (2015)
Catalog of ELGs publicly available soon!

- Galaxy bias of 1.35
- Contains about 600,000 ELGs over the South Galactic Cap

Delubac et al. (2015)
Take away message

Delubac et al.
Take away message

Delubac et al.
Take away message

Delubac et al.
Take away message

• Emission Line Galaxies
 - SFR was ~10x higher at z~1; resulting strong emission lines allow secure redshift determination in ~1 hour with SDSS
 - Want to select objects with highest SFRs: generally blue colors
 - $[\text{OII}]$ can be detected up to z=1.7 (ideally want higher spectral resolution than BOSS to split doublet, esp. at z > 1)

Key for DESI & PFS BAO surveys
Take away message

- SFR was ~10x higher at z~1; resulting strong emission lines allow secure redshift determination in ~1 hour with SDSS.
- Want to select objects with highest SFRs: generally blue colors.
- $[\text{OII}]$ can be detected up to z=1.7 (ideally want higher spectral resolution than BOSS to split doublet, esp. at z > 1).

Key for DESI & PFS BAO surveys.