High redshift BAO from BOSS and eBOSS

Timothée Delubac

Texas Symposium December 14th, 2015

Questions I want to address

- How did we measure BAO using Lyman-alpha forests in BOSS?
- What are the resulting constraints on cosmological models?
- How are we going to improve those constraints using Emission Line Galaxies (ELGs) in eBOSS?

BOSS maps the Universe to observe the BAO

- The Baryon Oscillation Spectroscopic Survey (BOSS) has acquired:
 - 1.5M galaxies (0.15< z <0.7)
 - 160k quasars (2.1 < z < 4.5)

• Correlation function at z = 0.57 obtained using 690,000 galaxies over 8500 deg².

• Correlation function at z = 0.57 obtained using 690,000 galaxies over 8500 deg².

• Observed transversally to the line of sight, it constrains an angle:

$$\theta = \frac{r_s}{(1+z)D_A(z)}$$

• Observed transversally to the line of sight, it constrains an angle:

$$\theta = \frac{(r_s)}{(1+z)D_A(z)}$$

Depend on the parameters of your model

• Observed along the line of sight, it constrains a difference in redshift:

$$\Delta z = \frac{r_s H(z)}{c}$$

• Observed along the line of sight, it constrains a difference in redshift:

Quasars can be observed at much higher redshift than galaxies

The light of quasars is absorbed during is travel toward us

- Quasars are used as background light sources
- Neutral hydrogen creates absorption lines in their spectra

• Transmitted flux fraction:

$$F(\lambda_{obs}) = \frac{Flux}{Continuum} = e^{-\tau}$$

• Optical depth :

$$\tau(\lambda_{obs}) \propto n_{\rm HI}(z_{abs})$$

Compute the correlation function of the Lyman-alpha forest

• Define a delta field:

$$\delta_f(\lambda_{rq}, \lambda_{obs}) = \frac{f(\lambda_{obs})}{Cont(\lambda_{rq})\bar{F}(\lambda_{obs})} - 1$$

• Use a trivial estimator:

$$\hat{\xi}_A = \frac{\sum_{i,j \in A} w_i w_j \delta_i \delta_j}{\sum_{i,j \in A} w_i w_j}$$

Use a fiducial cosmology:

$$(\Omega_m, \, \Omega_\Lambda) = (0.27, \, 0.73)$$

Used BOSS DRII quasars sample

• Analysis uses \sim 140,000 quasars with 2.1 < z < 3.5 over 9,000 deg²

Have a 5 sigma detection of the BAO peak

High redshift space distortion makes the peak bigger in the line of sight

No evidence for systematic effects at the level of statistical uncertainties

- Systematics that have been considered so far include:
 - Analysis pipeline
 - bias in the fit
 - Metal contaminations
 - Residuals in sky subtraction
 - wavelength dependent flux bias
 - Correlated noise in pixels

Mocks

BOSS

Pipeline

Obtain model independent constraints on D_A/r_s and D_H/r_s

Numerous cosmological implications including detection of Dark Energy by BAO only

 Purely geometric constraints. Lambda detected form BAO alone at more than 3 sig.

eBOSS maps the Universe to observe the BAO

ELGs will be the main tracer for DESI, Euclid, PSF, 4MOST...

- For z>0.8 the massive population of galaxies is dominated by star forming galaxies.
- ELG spectra display strong emission lines allowing secure estimation of their redshift in short exposure time.

Propose an ELG selection using a Fisher discriminant

Catalog of ELGs publicly available soon!

- Galaxy bias of 1.35
- Contains about 600,000 ELGs over the South Galactic Cap

