Confronting GRB prompt emission with a model for subphotospheric dissipation

Why should we, and how do we, move to physical models?

Björn Ahlgren
in collaboration with:
Josefin Larsson, Tanja Nymark,
Felix Ryde on the behalf of the Fermi LAT collaboration, Asaf Pe’er
Outline

❖ Introduction
❖ The model
 ❖ Physics and numerical code
 ❖ Creating DREAM
❖ Fitting the model to data
 ❖ GRB 100724B
 ❖ GRB 090618
❖ Conclusions
❖ Current and future work

Credit: ESO/A. Roquette
Introduction
Introduction

- Prompt emission still an unsolved problem in GRB physics
Introduction

- Prompt emission still an unsolved problem in GRB physics
- Lack a clear smoking gun signal
Introduction

- Prompt emission still an unsolved problem in GRB physics
- Lack a clear smoking gun signal
- Band function has no physical meaning
Introduction

- Prompt emission still an unsolved problem in GRB physics
- Lack a clear smoking gun signal
- Band function has no physical meaning
- Physical models needed
Based on fireball model, using numerical code by Pe’er and Waxman (2005)

- $L_{0.52}$ is released at r_0
- Fraction ε_d dissipates at r_d
- Follow the photon and electron distribution until last interaction
- No dynamics included
- Code is 1D
Formation of the spectrum

Running the code

Building the output in a specific simulation
Formation of the spectrum

Running the code

Building the output in a specific simulation
The model

Creating DREAM

- Table model for Xspec
- DREAM - Dissipation with Radiative Emission As a table Model
- 4 free parameters: $\tau, \Gamma, L_{0.52}, \varepsilon_d$
- Interpolation between spectra

Parameters:

- $\tau = \{1,5,10,20,35\}$
- $\Gamma = \{50,100,250,500\}$
- $L_{0.52} = \{0.1,1,10,100,300\}$
- $\varepsilon_d = \{0.1,0.2,0.3,0.4,0.5\}$

All energy into electrons, none to magnetic fields. Electrons in Maxwellian distribution.
The model

Output, in GBM energy interval

- Soft slope due to comptonisation
- Increasingly peaked spectrum with increasing optical depth, \(\tau \)

Example output from three runs of the code. \(\Gamma = 250, L_{0.52} = 10, \varepsilon_d = 0.2, \) From Ahlgren et al. (2015)
Fitting the model to data

Data & analysis

GRB 090618
- $z = 0.54$
- $L = 2.8 \times 10^{51}$ erg s$^{-1}$
- “Typical” Band function

GRB 100724B
- $z = \text{unknown}$
- Double peaked spectrum (Guiriec et al. 2011)

Time resolved analysis with signal-to-noise binning and pgstat statistics in XSPEC
Example fits with the DREAM model to a specific time bin of GRB 090618. Band function fit for comparison. GBM data.

From Ahlgren et al. (2015)
Parameter evolution

GRB 090618

Fireball luminosity, $L_{0.52}$
Parameter evolution

GRB 090618

Optical depth, τ
Parameter evolution

GRB 090618

Bulk Lorentz factor, Γ
Example fits with the DREAM model to a specific time bin of GRB 100724B. Band function + black body fit for comparison. GBM data, and LAT-LLE data in blue. From Ahlgren et al. (2015)

$\tau = 4.9$
$\Gamma = 443$
$L_{0.52} = 42$
$\varepsilon_d = 0.12$
$\text{pgstat/dof} = 406/383$
z = 1

$\alpha = -1.06$
$\beta = -2.4$
$E_{\text{peak}} = 712\text{keV}$
$kT = 32\text{keV}$
$\text{pgstat/dof} = 401/381$
Parameter evolution

GRB 100724B

Fireball luminosity, $L_{0.52}$

Optical depth, τ

Bulk Lorentz factor, Γ
Summary and conclusions

- We show fits to data with a physical model for GRB prompt emission.
- We obtain good fits to different bursts, without synchrotron radiation.
- We suggest that there is no fundamental difference between a burst typically fitted with Band and one fitted with Band+BB.
- If a spectrum is found to be single or double peaked by fitting with Band or Band+BB depends on how close the thermal and comptonised peaks are.

Band-like spectrum produced from Comptonisation of thermal component
Current and future work

- Currently expanding the parameter space
- Includes synchrotron radiation
- Changed jet properties
- Fitting large sample of GRBs
- What fraction of GRBs can be described by this model?
- Distribution of best-fitting parameters and temporal evolution

For more details, please see Ahlgren et al. (2015)
Thank you!

Questions?