Testing for inhomogeneities in real time

Wessel Valkenburg CERN

Take home message

- Proof on concept of a tool:
- Real-time cosmology can be used to observe different inhomogeneous models
- Focus on angular motion using multipole vectors
- This talk: no focus on redshift drift

More insight inside the light cone: realtime cosmology

Realtime cosmology: observe

 the same 10 yrs later
Real time cosmology

- With e.g. GAIA have enough precision and volume
- only need some more time
- 500.000 quasars
- cross correlate maps from different times

Real time cosmology

The GIQC_5 in a nutshell

[Andrei et al. 2014]

Number of sources	$1,248,372$
Sources with magnitude	$1,246,512$
Sources with redshift	$1,157,285$
Astrometry precision	1 arcsec
Magnitude precision	0.5
Redshift precision	0.01
Average density	30.3 sources $/ \mathrm{deg}^{2}$
Average neighbor distance	$3.7 \mathrm{arcmin}(\sigma 4.9 \mathrm{arcmin})$
Maximum distance to neighbor	5.2 deg
Maximum distance to neighbor (average of 100 larger values)	$3.0 \mathrm{deg}(\sigma 0.6 \mathrm{deg})$

$$
\begin{aligned}
& F\left[\hat{n}_{1}, \hat{n}_{2}, \hat{n}^{\prime}{ }_{1}\left(\hat{n}_{1}, \vec{q}_{1}\right), \hat{n}_{2}^{\prime}\left(\hat{n}_{2}, \vec{q}_{2}\right)\right] \equiv \cos \gamma_{12}-\cos \gamma_{12}^{\prime} \\
& \langle F\rangle(\theta, \phi) \equiv \int_{r_{\min }}^{r_{\max }} \mathrm{d} r n_{\text {obj }}(r) \int_{r_{\min }}^{r_{\max }} \mathrm{d} r^{\prime} n_{\text {obj }}\left(r^{\prime}\right) \int \frac{\mathrm{d} \Omega^{\prime}}{4 \pi} F, \\
& \langle F\rangle(\theta, \phi)=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \phi) .
\end{aligned}
$$

Simulate different

anisotropic models

Rotating universe up to I Gpc, FLRW outside. Observer at 30 Mpc from center.

LTB Void $<F^{2}>$
LTB Void <F>

Compare orientations of different multipoles: analysis of axis of symmetry of different models

- Decompose $<F(\theta, \varphi)>$ maps in multipoles
- Compute multipole vectors to quantify directions of anisotropy
- Compute inner products of different vectors: coordinate independent handle on directions.
- e.g. dipole orthogonal to quadrupole? Parallel?

Compare orientations of different multipoles: analysis of axis of symmetry of different models

For an extreme situation: 1000 years of observation time, and high velocities on rotating models.

Amendola, WV et al., JCAP (2013)

Conclusion

- Proof on concept of a tool:
- Real-time cosmology can be used to observe different inhomogeneous models
- Using multipole vectors

