

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES Département de physique théorique

Neutrinos beyond the linear regime: a new theoretical approach

Hélène DUPUY (University of Geneva) 28th Texas Symposium on Relativistic Astrophysics December, 15th 2015

Work realized in collaboration with Francis BERNARDEAU (Institut d'Astrophysique de Paris, CEA Saclay)

Figure 6.4 Matter power spectrum at redshift zero for a Λ CDM model with three degenerate massive neutrino species ($m_v = 0.3$ eV), compared to the individual power spectrum of CDM, baryon and neutrino density perturbations. In this model k_{nr} is equal to 5.1 \times 10⁻³h/Mpc (see Eq. (5.94)). For wavenumbers $k > k_{\text{nr}}$, neutrino perturbations remain smaller than CDM and baryon perturbations, because of their low growth rate after the nonrelativistic transition.

Source: *Neutrino Cosmology* (book) (J.Lesgourgues, G. Mangano, G. Miele and S. Pastor, 2013)

Numerical simulations showing the effect of massive neutrinos on the nonlinear matter power spectrum $(m = 0.6 \text{ eV})$

Authors: S. Bird *et al.* (arXiv: 1109.4416)

a) The standard description of the nonlinear growth of structure

Review on the subject \rightarrow arXiv: 1311.2724 (F.Bernardeau)

In cold fluids, the velocity dispersion is negligible.

No curl mode can be generated in the velocity field u_i .

The velocity field is entirely characterized by its **divergence:**

 $\theta(x^i,t) = \frac{1}{t}$ *aH* $\partial u_i(x^i,t)$ $\frac{\partial}{\partial x^i}$.

In reciprocal space, the system can be rewritten **compactly** with the help of the variable

$$
\Psi_a(\mathbf{k},\eta) \equiv (\delta(\mathbf{k},\eta), -\theta(\mathbf{k},\eta))^{\mathrm{T}}.
$$

 5 / 17

The resulting equation is:

a $\partial \Psi_a$ $\frac{\partial^2 \Psi_a}{\partial a}(\mathbf{k}, \eta) + \Omega_a^{\,\,b}(\eta) \, \Psi_b(\mathbf{k}, \eta) = \gamma_a^{\,\,bc}(\mathbf{k}_1, \mathbf{k}_2) \Psi_b(\mathbf{k}_1, \eta) \Psi_c(\mathbf{k}_2, \eta).$

b) The standard description of massive neutrinos

All details can be found e.g. in *Neutrino Cosmology* (J.Lesgourgues, G. Mangano, G. Miele and S. Pastor, 2013).

- Neutrinos are described via their **phase-space** distribution function.
- The quantities useful for cosmology are obtained by computing the moments of the distribution function:

$$
T_{\mu\nu}(\eta, x^i) = \int d^3p_i \, (-g)^{-1/2} \frac{p_\mu p_\nu}{p^0} \, f(\eta, x^i, p_i).
$$

• The distribution function satisfies the **Vlasov equation**,

$$
\frac{\mathrm{d}f(x,q,\eta)}{\mathrm{d}\eta} = 0.
$$

- In linear perturbation theory, $\, f = f_0(1 + \Psi). \,$
- Explicit calculations are done with the help of **Boltzmann codes** (integration of the Boltzmann hierarchy).

c) Proposition of a new approach

NEUTRINOS AS A COLLECTION OF FLOWS

• In each flow,
$$
P_i(\eta, \mathbf{x}; \vec{\tau}) = \frac{\int \mathrm{d}^3 p_i \ f_{\vec{\tau}}(\eta, x^i, p_i) p_i}{\int \mathrm{d}^3 p_i \ f_{\vec{\tau}}(\eta, x^i, p_i)}.
$$

arbitrary function

• More generally,
$$
\mathcal{F}[P_i(\eta, \mathbf{x})] n_c(\eta, \mathbf{x}) = \int d^3p_i f(\eta, x^i, p_i) \stackrel{\blacklozenge}{\mathcal{F}}[p_i].
$$

• The physical quantities of interest can be expressed in terms of our fields:

$$
\underbrace{\int d^3p_i f^{\text{tot}}(\eta, x^i, p_i) \mathcal{F}(p_i)}_{\text{Boltzmann approach}} = \underbrace{\int d^3\tau_i n_c(\eta, \mathbf{x}; \tau_i) \mathcal{F}(P_i(\eta, \mathbf{x}; \tau_i))}_{\text{our approach}}.
$$

• In each flow, the equation of motion of the density field is

$$
\frac{\partial}{\partial \eta} n_c + \frac{\partial}{\partial x^i} \left(\frac{P^i}{P^0} n_c \right) = 0,
$$

where $P^i = g^{ij} P_j$ and P^0 is defined so that $P^\mu P_\mu = -m^2$.

 $(l_{\text{max}} = 6, N_\mu = 12, N_\text{q} = N_\tau = 40, k = k_{\text{eq}} = 0.01 h/\text{Mpc}, m = 0.3 \text{ eV}.$

USEFUL PROPERTIES ON SUBHORIZON SCALES

• In a perturbed Friedmann-Lemaître metric, the equations read:

$$
\frac{\partial}{\partial \eta} n_c + \frac{\partial}{\partial x^i} \left(\frac{P^i}{P^0} n_c \right) = 0,
$$

$$
\frac{\partial P_i}{\partial \eta} + \frac{P^j}{P^0} \frac{\partial P_i}{\partial x^j} = a^2(\eta) \left[-P^0 \partial_i A + P^j \partial_i B_j + \frac{1}{2} \frac{P^j P^k}{P^0} \partial_i h_{jk} \right].
$$

• In the **subhorizon** limit, they become:

 τ_0

$$
\mathcal{D}_{\eta}n_{c} + \partial_{i}(V_{i}n_{c}) = 0, \qquad \text{initial momentum of the flow}
$$
\n
$$
\mathcal{D}_{\eta}P_{i} + V_{j}\partial_{j}P_{i} = \tau_{0}\partial_{i}A + \tau_{j}^{'}\partial_{i}B_{j} - \frac{1}{2}\frac{\tau_{j}\tau_{k}}{\tau_{0}}\partial_{i}h_{jk},
$$
\nwith
$$
\tau_{0} = -\sqrt{m^{2}a^{2} + \tau_{i}^{2}}, \quad \mathcal{D}_{\eta} = \frac{\partial}{\partial\eta} - \frac{\tau_{i}}{\tau_{0}}\frac{\partial}{\partial x^{i}}
$$
\nand
$$
V_{i} = -\frac{P_{i} - \tau_{i}}{\tau_{0}} + \frac{\tau_{i}}{\tau_{0}}\frac{\tau_{j}(P_{j} - \tau_{j})}{(\tau_{0})^{2}}.
$$
 \n
$$
\longleftarrow \text{peculiar velocity}
$$

GENERALIZATION 1: NO CURL MODES IN THE MOMENTUM FIELD

• On **subhorizon scales** the curl field, defined as

$$
\Omega_i = \epsilon_{ijk} \partial_k P_j,
$$

obeys the equation $\mathcal{D}_n \Omega_k + V_i \partial_i \Omega_k + \partial_i V_i \Omega_k - \partial_i V_k \Omega_i = 0$.

The curl field is only sourced by itself.

For adiabatic initial conditions, the **comoving momentum field can be written as a gradient.**

As the velocity field of cold dark matter, it is entirely **characterized by its divergence**.

GENERALIZATION 2: COMPACT FORM OF THE EQUATIONS

• By analogy with cold dark matter, we introduce

$$
\theta_{\tau_i}(\eta, x^i) = -\frac{P_{i,i}(\eta, x^i; \tau_i)}{ma\mathcal{H}}, \quad \delta_{\tau_i}(\eta, x^i) = \frac{n_c(\eta, x^i; \tau_i)}{n_c^{(0)}(\tau_i)} - 1.
$$

• In reciprocal space, it gives

$$
\left(a\partial_a - i\frac{\mu k\tau}{\mathcal{H}\tau_0}\right)\delta_{\vec{\tau}}(\mathbf{k}) - \frac{ma}{\tau_0}\left(1 - \frac{\mu^2\tau^2}{\tau_0^2}\right)\theta_{\vec{\tau}}(\mathbf{k}) =
$$

$$
\frac{ma}{\tau_0}\int d^3\mathbf{k}_1 d^3\mathbf{k}_2 \alpha_R(\mathbf{k}_1, \mathbf{k}_2; \vec{\tau})\delta_{\vec{\tau}}(\mathbf{k}_1)\theta_{\vec{\tau}}(\mathbf{k}_2),
$$

$$
\left(1 + a\frac{\partial_a \mathcal{H}}{\mathcal{H}} + a\partial_a - i\frac{\mu k \tau}{\mathcal{H}\tau_0}\right)\theta_{\vec{\tau}}(\mathbf{k}) + \frac{k^2}{ma\mathcal{H}^2}\mathcal{S}_{\vec{\tau}}(\mathbf{k}) = \frac{ma}{\tau_0} \int d^3\mathbf{k}_1 d^3\mathbf{k}_2 \beta_R(\mathbf{k}_1, \mathbf{k}_2; \vec{\tau})\theta_{\vec{\tau}}(\mathbf{k}_1)\theta_{\vec{\tau}}(\mathbf{k}_2).
$$

 $15₁$

GENERALIZATION 2: COMPACT FORM OF THE EQUATIONS

• Considering N flows, it is useful to introduce the 2N-uplet

$$
\Psi_a(\mathbf{k}) = (\delta_{\tau_1}(\mathbf{k}), \theta_{\tau_1}(\mathbf{k}), \dots, \delta_{\tau_n}(\mathbf{k}), \theta_{\tau_n}(\mathbf{k}))^T.
$$

• The resulting equations is

$$
a\frac{\partial \Psi_a}{\partial a}(\mathbf{k},\eta) + \Omega_a^b(\mathbf{k},\eta)\Psi_b(\mathbf{k},\eta) = \gamma_a^{bc}(\mathbf{k}_1,\mathbf{k}_2,\eta)\Psi_b(\mathbf{k}_1,\eta)\Psi_c(\mathbf{k}_2,\eta).
$$

The relativistic equation of motion is **formally the same as** the equation describing cold dark matter.

- This study is presented in arXiv: 1411.0428 (H. Dupuy and
- F. Bernardeau).

 $\overline{\mathbf{a} \cdot \mathbf{r}}$

CONCLUSIONS AND PERSPECTIVES

- We proposed a new approach to study massive neutrinos beyond the linear regime.
- Principle of the method: describing neutrinos as a collection of flows.
- How could we make the explicit computation of the nonlinear matter power spectrum feasible?
- What are the scales at which both nonlinearities and relativistic effects are relevant?
- What is the number of flows necessary for the method to be satisfactory with a given precision?
- What is the most efficient way of discretizing momenta?