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Numerical	simulaBons	showing	the	effect	of	massive	neutrinos	
on	the	nonlinear	mafer	power	spectrum	(m	=	0.6	eV)		

Linear	
predicBon	
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	a)	The	standard	description	of	the	
nonlinear	growth	of	structure	
Review	on	the	subject	à	arXiv:	1311.2724	(F.Bernardeau)	
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•  In	cold	fluids,	the	velocity	dispersion	is	negligible.	

												No	curl	mode	can	be	generated	in	the	velocity	field	ui	.	
	
														The	velocity	field	is	enBrely	characterized	by	its	divergence:									
								
	
	
															In	reciprocal	space,	the	system	can	be	rewrifen	compactly	
with	the	help	of	the	variable		
	
	
•  The	resulBng	equaBon	is:		
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	b)	The	standard	description	of	massive	
neutrinos	
All	details	can	be	found	e.g.	in	Neutrino	Cosmology	
(J.Lesgourgues,	G.	Mangano,	G.	Miele	and	S.	Pastor,	2013).		
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•  Neutrinos	are	described	via	their	phase-space	distribuBon	
funcBon.	

•  The	quanBBes	useful	for	cosmology	are	obtained	by	compuBng	
the	moments	of	the	distribuBon	funcBon:		

	

	
•  The	distribuBon	funcBon	saBsfies	the	Vlasov	equa:on,	
							
																																																																							.	

•  In	linear	perturbaBon	theory,																																	.		
	
•  Explicit	calculaBons	are	done	with	the	help	of	Boltzmann	codes	
(integraBon	of	the	Boltzmann	hierarchy).	

	

	

	

f = f0(1 + )
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= 0

	7	/	17	

Tµ⌫(⌘, x
i) =

Z
d3pi (�g)�1/2 pµp⌫

p

0
f(⌘, xi

, pi).



	c)	Proposition	of	a	new	approach	

	8	/	17	



		NEUTRINOS	AS	A	COLLECTION	OF	FLOWS	
	
	
	

	

•  Total	distribuBon	funcBon:	
	
•  One	density	field	per	flow:		

	
•  In	each	flow,		

	9	/	17	

iniBal	Bme	

later	Bme	

f tot(⌘,x,p) =
X

~⌧

f~⌧ (⌘,x,p).

iniBal	momentum	
(label	of	the	flow)	

nc(⌘,x;~⌧) =

Z
d3pi f~⌧ (⌘, x

i
, pi).

f~⌧ (⌘, x
i
, pi) = nc(⌘,x;~⌧)�D(pi � Pi(⌘,x;~⌧)).

momentum	field	of	the	flow	



	
	
•  In	each	flow,	
	
	
	
•  More	generally,	
	
•  The	physical	quanBBes	of	interest	can	be	expressed	in	terms	of	our	
fields:	
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•  In	each	flow,	the	equaBon	of	moBon	of	the	density	field	is	

	

	
	
•  In	each	flow,		

	
															Combined	conservaBon	laws	impose	
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RelaBve	differences		
(in	 units	 of	 10-4)	 in	
comparison	with	the	
Boltzmann	approach	
	

(l
max

= 6, Nµ = 12, N
q

= N⌧ = 40, k = k
eq

= 0.01h/Mpc,m = 0.3 eV).
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More	details	can	be	found	in		
arXiv:	1311.5487	(H.	Dupuy	and	F.	Bernardeau).	
	



USEFUL	PROPERTIES	ON	SUBHORIZON	SCALES	
	

•  In	a	perturbed	Friedmann-Lemaître	metric,	the	equaBons		read:	
	

	

	
•  In	the	subhorizon	limit,	they	become:	
	
	
	
	
			with	
	
			and	
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GENERALIZATION	1:	NO	CURL	MODES	IN	THE	MOMENTUM	FIELD	
	
•  On	subhorizon	scales	the	curl	field,	defined	as	
	
	
	
	
	
															The	curl	field	is	only	sourced	by	itself.			
	
															For	adiabaBc	iniBal	condiBons,	the	comoving	momentum	
field	can	be	wriSen	as	a	gradient.	
	
															As	the	velocity	field	of	cold	dark	mafer,	it	is	en:rely	
characterized	by	its	divergence.	
	

⌦i = ✏ijk@kPj ,

D⌘⌦k + Vi@i⌦k + @iVi⌦k � @iVk⌦i = 0.obeys	the	equaBon	
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GENERALIZATION	2:	COMPACT	FORM	OF	THE	EQUATIONS	

•  By	analogy	with	cold	dark	mafer,	we	introduce	

•  In	reciprocal	space,	it	gives	
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GENERALIZATION	2:	COMPACT	FORM	OF	THE	EQUATIONS	
	

•  Considering	N	flows,	it	is	useful	to	introduce	the	2N-uplet	
	
	
	
•  The	resulBng	equaBons	is		

										
																
														The	relaBvisBc	equaBon	of	moBon	is	formally	the	same	as	
the	equa:on	describing	cold	dark	maSer.	
	
	
•  This	study	is	presented	in	arXiv:	1411.0428	(H.	Dupuy	and		
F.	Bernardeau).	
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CONCLUSIONS	AND	PERSPECTIVES	
	
•  We	proposed	a	new	approach	to	study	massive	neutrinos	
beyond	the	linear	regime.	

•  Principle	of	the	method:	describing	neutrinos	as	a	collecBon	
of	flows.	

•  How	could	we	make	the	explicit	computaBon	of	the	nonlinear	
mafer	power	spectrum	feasible?	

•  What	are	the	scales	at	which	both	nonlineariBes	and	
relaBvisBc	effects	are	relevant?	

•  What	is	the	number	of	flows	necessary	for	the	method	to	be	
saBsfactory	with	a	given	precision?	

•  What	is	the	most	efficient	way	of	discreBzing	momenta?	
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