Cosmological constraints on the neutron lifetime

28th Texas Symposium on Relativistic Astrophysics

Laura Salvati University of Rome, Sapienza

Introduction

Derive constraints on the **neutron lifetime**

- primordial abundances of light elements produced during Big Bang Nucleosynthesis
	- direct astrophysical observations
	- Cosmic Microwave Background anisotropies

Big Bang Nucleosynthesis (BBN):

formation of light nuclei in the first minutes after the Big Bang.

Big Bang Nucleosynthesis (BBN):

formation of light nuclei in the first minutes after the Big Bang.

<u>Initial conditions</u> $t \simeq 2 \text{ s}, E \sim 10^2 \text{ keV}$

decoupling of neutrinos

$$
\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma
$$

Total energy density of radiation

*n*n $n_{\rm p}$ $\simeq 0.2$ neutron-to-proton ratio

Big Bang Nucleosynthesis (BBN):

formation of light nuclei in the first minutes after the Big Bang.

<u>Initial conditions</u> $t \simeq 2 \text{ s}, E \sim 10^2 \text{ keV}$

Big Bang Nucleosynthesis (BBN):

formation of light nuclei in the first minutes after the Big Bang.

<u>Initial conditions</u> $t \simeq 2 \text{ s}, E \sim 10^2 \text{ keV}$

decoupling of neutrinos

$$
\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma
$$

Total energy density of radiation

*n*n $n_{\rm p}$ $\simeq 0.2$ neutron-to-proton ratio

Big Bang Nucleosynthesis (BBN):

formation of light nuclei in the first minutes after the Big Bang.

<u>Initial conditions</u> $t \simeq 2 \text{ s}, E \sim 10^2 \text{ keV}$

 $\rho_r =$ $\sqrt{ }$ $1 + \frac{7}{8}$ 8 $\left(\frac{4}{11}\right)^{4/3}$ $N_{\rm eff}$ $\overline{}$ ρ_γ decoupling of neutrinos Total energy density of radiation

*n*n $n_{\rm p}$ $\simeq 0.2$ neutron-to-proton ratio

Final conditions $t \simeq 1000$ s, $E < 30$ keV

- \cdot 75% H
- 25% He
- \cdot traces of other elements $\,$ D, $\, \mathrm{He}^{3}, \, \mathrm{Li}^{7}, \, \mathrm{Be}^{7}$

Big Bang Nucleosynthesis (BBN):

formation of light nuclei in the first minutes after the Big Bang.

<u>Initial conditions</u> $t \simeq 2 \text{ s}, E \sim 10^2 \text{ keV}$

 $\rho_r =$ $\sqrt{ }$ $1 + \frac{7}{8}$ 8 $\left(\frac{4}{11}\right)^{4/3}$ $N_{\rm eff}$ $\overline{}$ ρ_γ decoupling of neutrinos Total energy density of radiation

*n*n $n_{\rm p}$ $\simeq 0.2$ neutron-to-proton ratio

Final conditions $t \simeq 1000$ s, $E < 30$ keV

- \cdot 75% H
- 25% He
- \cdot traces of other elements $\,$ D, $\, \mathrm{He}^{3}, \, \mathrm{Li}^{7}, \, \mathrm{Be}^{7}$

BBN: good check for Standard Model of Cosmology Standard Model of Particle Physics

Cosmic Microwave Background (CMB): radiation coming from Last Scattering Surface.

Cosmic Microwave Background (CMB): radiation coming from Last Scattering Surface.

Cosmic Microwave Background (CMB): radiation coming from Last Scattering Surface.

Angular correlation function Angular power spectrum

Ishida et al., Phys. Rev. D 90 (2014) 8, 083519

Primordial abundances from CMB

PArthENoPE code

Pisanti et al., Comput. Phys. Commun. 178 (2008) 956

- beginning: nuclear statistical equilibrium conditions
- set of coupled differential equations
- departure from chemical equilibrium of nuclear species
- asymptotic abundances as functions of cosmological parameters

Primordial abundances from CMB PArthENoPE code Pisanti et al., Comput. Phys. Commun. 178 (2008) 956 • beginning: nuclear statistical equilibrium conditions • set of coupled differential equations • departure from chemical equilibrium of nuclear species • asymptotic abundances as functions of cosmological parameters **Standard BBN** $Y(\psi_b, N_{\text{eff}}; \tau_n, \xi)$ from cosmology \longleftarrow from particle/nuclear physics

Results from Planck 2015 *Planck* 2015 results. XIII. arXiv:1502.01589

95% c.l., PlanckTTTEEE+lowP

Results from Planck 2015 *Planck* 2015 results. XIII. arXiv:1502.01589

95% c.l., PlanckTTTEEE+lowP

Results from Planck 2015 *Planck* 2015 results. XIII. arXiv:1502.01589

95% c.l., PlanckTTTEEE+lowP

Results from Planck 2015 *Planck* 2015 results. XIII. arXiv:1502.01589

95% c.l., PlanckTTTEEE+lowP

Results from Planck 2015 *Planck* 2015 results. XIII. arXiv:1502.01589

95% c.l., PlanckTTTEEE+lowP

Results from Planck 2015 *Planck* 2015 results. XIII. arXiv:1502.01589

95% c.l., PlanckTTTEEE+lowP

main uncertainties are due to particle-nuclear physics

main uncertainty on Helium-4 is due to the one on neutron lifetime τ_n .

main uncertainties are due to particle-nuclear physics

main uncertainty on Helium-4 is due to the one on neutron lifetime τ_n .

Current estimate

State of the art from particle physics experiments (Particle Data Group)

main uncertainties are due to particle-nuclear physics

main uncertainty on Helium-4 is due to the one on neutron lifetime τ_n .

main uncertainties are due to particle-nuclear physics

main uncertainty on Helium-4 is due to the one on neutron lifetime τ_n .

$$
Y_p = 0.24703 \left(\frac{10^{10} \eta}{6.10}\right)^{0.039} \left(\frac{N_{\nu}}{3.0}\right)^{0.163} \left(\frac{G_N}{G_{N,0}}\right)^{0.35} \left(\frac{\tau_n}{880.3s}\right)^{0.73}
$$

$$
\times \left[p(n,\gamma)d\right]^{0.005} \left[d(d,n)^3\text{He}\right]^{0.006} \left[d(d,p)t\right]^{0.005}
$$

$$
\boxed{\rm \frac{D}{H}\propto \tau_n^{0.41},~\rm \frac{^3He}{H}\propto \tau_n^{0.15},~\rm \frac{^7Li}{H}\propto \tau_n^{0.43}}
$$

Cyburt et al., arXiv:1505.01076

main uncertainties are due to particle-nuclear physics

main uncertainty on Helium-4 is due to the one on neutron lifetime τ_n .

$$
Y_p = 0.24703 \left(\frac{10^{10} \eta}{6.10}\right)^{0.039} \left(\frac{N_{\nu}}{3.0}\right)^{0.163} \left(\frac{G_N}{G_{N,0}}\right)^{0.35} \left(\frac{\tau_n}{880.3s}\right)^{0.73}
$$

$$
\times \left[p(n,\gamma)d\right]^{0.005} \left[d(d,n)^3\text{He}\right]^{0.006} \left[d(d,p)t\right]^{0.005}
$$

$$
\boxed{\color{blue}{\frac{\rm D}{\rm H}\propto \tau_n^{0.41},\;\;\frac{^3{\rm He}}{\rm H}\propto \tau_n^{0.15},\;\;\frac{^7{\rm Li}}{\rm H}\propto \tau_n^{0.43}}
$$

Cyburt et al., arXiv:1505.01076

$$
\sum_{\substack{1800\\0.5 \text{ k.} \text{ 1400}}^{1800} \text{ F.} \text{ = } \frac{\pi_{\text{a}} = 1080 \text{ s}}{\frac{1}{2} \cdot 1000}
$$
\n
$$
\sum_{\substack{1800\\0.5 \text{ k.} \text{ 1400}}^{1800} \text{ F.} \text{ = } \frac{1}{2} \cdot 1000}
$$
\n
$$
\sum_{\substack{1800\\0.5 \text{ k.} \text{ 1400}}^{1800} \text{ F.} \text{ = } \frac{1}{2} \cdot 1000}
$$
\n
$$
\sum_{\substack{1800\\0.5 \text{ k.} \text{ 1400}}^{1800} \text{ F.} \text{ = } \frac{1}{2} \cdot 1000}
$$
\n
$$
\sum_{\substack{1800\\0.5 \text{ k.} \text{ 1400}}^{1800} \text{ F.} \text{ = } \frac{1}{2} \cdot 1000}
$$
\n
$$
\sum_{\substack{1800\\0.5 \text{ k.} \text{ 1400}}^{1800} \text{ F.} \text{ = } \frac{1}{2} \cdot 1000}
$$
\n
$$
\sum_{\substack{1800\\0.5 \text{ k.} \text{ 1400}}^{1800} \text{ F.} \text{ = } \frac{1}{2} \cdot 1000}
$$
\n
$$
\sum_{\substack{1800\\0.5 \text{ k.} \text{ 1400}}^{1800} \text{ F.} \text{ = } \frac{1}{2} \cdot 1000}
$$
\n
$$
\sum_{\substack{1800\\0.5 \text{ k.} \text{ 1400}}^{1800} \text{ F.} \text{ = } \frac{1}{2} \cdot 1000}
$$
\n
$$
\sum_{\substack{1800\\0.5 \text{ k.} \text{ 1400}}^{1800} \text{ F.} \text{ = } \frac{1}{2} \cdot 1000}
$$
\n
$$
\sum_{\substack{1800\\0.5 \text{ k.} \text{ 1400}}^{1800} \text{
$$

For the analysis:

- Monte Carlo Markov Chain (MCMC) package cosmomc (publicly available).
- Each step in MCMC:
	- \cdot evaluate Y_p using a fitting formula from PArthENoPE BBN code,
	- evaluate neutron life-time.

Planck and current cosmological data -

 Λ CDM model + τ_n

(68% c.l.)

Salvati, Pagano, Consiglio, Melchiorri, arXiv:1507.07243

CMB observations + direct astrophysical observations

experimental prior recovered He mass fraction

CMB + He measurements: tighter constraints on τ_n .

Salvati, Pagano, Consiglio, Melchiorri, arXiv:1507.07243

Extensions to Standard Model

Varying the extra relativist degrees of freedom $\longrightarrow N_{\text{eff}}$

Salvati, Pagano, Consiglio, Melchiorri, arXiv:1507.07243

Future cosmological constraints

Dataset

Salvati, Pagano, Consiglio, Melchiorri, arXiv:1507.07243

Future cosmological constraints

Future astrophysical observations

To reach PDG accuracy $\implies \sigma(Y_p)=0.0002$ better control of systematics.

Conclusions

Constrain neutron lifetime with cosmology and astrophysics

Thank you for your attention

Results from Planck 2015 *Planck* 2015 results. XIII. arXiv:1502.01589

lowP: temperature-polarization likelihood (including cross-correlation) $\ell = 2 \div 29$

Laura Salvati

Results from Planck 2015 *Planck* 2015 results. XIII. arXiv:1502.01589

Relaxing N_{eff}

TTTEEE: spectrum-based temperature-polarization likelihood (including cross-correlation) $\ell = 30 \div 2500$ lowP: temperature-polarization likelihood (including cross-correlation) $\ell = 2 \div 29$

Laura Salvati and a structure of the structure of th

Results from Planck 2015 *Planck* 2015 results. XIII. arXiv:1502.01589

TTTEEE: spectrum-based temperature-polarization likelihood (including cross-correlation) $\ell = 30 \div 2500$ lowP: temperature-polarization likelihood (including cross-correlation) $\ell = 2 \div 29$

Laura Salvati and a structure of the structure of th

Particle Data Group

To average data: standard weighted least-squares method • increasing errors with a "scale factor". PDG. Chinese Physics C Vol. 38, No. 9 (2014) 090001 $\overline{x} \pm \delta \overline{x} = \frac{\sum_i w_i x_i}{\sum_i w_i} \pm (\sum_i w_i)^{-1/2}$ $\chi^2 = \sum$ $w_i(\bar{x} - x_i)^2$ $\overline{}$ χ^2 *i* $S = \Lambda$ $N-1$ χ^2 $w_i = 1/(\delta x_i)^2$ if $\frac{\lambda}{\lambda^r-1}>1$ $N-1$ scale factor assuming uncorrelated measures $\delta \bar{x}_{fin} = S \cdot \delta \bar{x}$ **WEIGHTED AVERAGE** 880.3±1.1 (Error scaled by 1.9) χ^2 **YUE** 10.8 13 CNTR **ARZUMANOV** 12 0.4 CNTF 1.1 **PICHLMAIER** 10 CNTR 0.1 5.6 **SEREBROV** 05 CNTR **BYRNE** 96 **CNTR MAMPE** 93 **CNTR** 0.7 18.8 (Confidence Level = 0.0021) 880 885 890 905 875 895 900 neutron mean life (s) credits:<http://pdg.lbl.gov>

Forecasts

Produce a CMB dataset (experimental dataset):

- Planck 2015 best-fit as fiducial model
- uncertainties due to foreground removal smaller than statistical errors
- negligible beam uncertainties
- white noise.

Lewis, Phys. Rev. D 71 (2005) 083008

Euclid mission:

- experimental specification in Martinelli et al., Phys. Rev. D 83 (2011) 023012
- Fisher matrix formalism.

How to improve estimate of primordial abundances:

• main uncertainties are due to particle-nuclear physics.

Deuterium

Big Bang Nucleosynthesis (BBN):

formation of light nuclei in the first minutes after the Big Bang.

Before BBN:

- neutrinos decoupling $2.0 \text{ MeV} < E < 3.5 \text{ MeV}$
	- \cdot e^{\pm} annihilation, photons reheating
- departure from equilibrium for $\frac{\mu_{\rm n}}{\mu}$. *n*n $n_{\rm p}$

Steigmann, Annu. Rev. Nucl. Part. Sci. 2007.57:463-491

$$
\rho_{\nu, \text{ID}} = 3 \cdot \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}
$$
\nneutrinos energy density,
\nInstantaneous Decoupling\n
$$
\rho_{\nu} \equiv \frac{N_{\text{eff}}}{3} \rho_{\nu, \text{ID}} \longrightarrow \text{Relativistic degrees of freedom}
$$
\nneutrinos energy density,
\nNon Instantaneous Decoupling\n
$$
\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma}
$$

Total energy density of radiation

Lesgourgues et al., New J. Phys.16 (2014) 065002