A unifying description of Dark Energy (\& Modified Gravity)

David Langlois
(APC, Paris)

Introduction \& motivations

- Plethora of models of dark energy \& modified gravity:
- Cosmological constant
- quintessence, K-essence
- $f(R)$ gravity
- Horndeski \& beyond Horndeski
- Massive gravity
- ...
- Large amount of data from future cosmological surveys (DES, LSST, eBOSS, DESI, Euclid, ...)
- General framework to confront models with data

Theories

Effective description (unified language)

Observational constraints

Introduction \& motivations

- Plethora of models of dark energy \& modified gravity:
- Cosmological constant
- quintessence, K-essence
- $f(R)$ gravity
- Horndeski \& beyond Horndeski
- Massive gravity
- ...
- Large amount of data from future cosmological surveys (DES, LSST, eBOSS, DESI, Euclid, ...)
- General framework to confront models with data:
- Parametrized modified Einstein equations
- Effective action

Uniform scalar field slicing

[Inflation: Creminelli et al. '06; Cheung et al. '07]

- Restriction: single scalar field models
- The scalar field defines a preferred slicing Constant time hypersurfaces = uniform field hypersurfaces

- All perturbations embodied by the metric only

Uniform scalar field slicing

- 3+1 decomposition based on this preferred slicing
- Basic ingredients
- Unit vector normal to the hypersurfaces

- Projection on the hypersurfaces: $\quad h_{\mu \nu}=g_{\mu \nu}+n_{\mu} n_{\nu}$

ADM formulation

- ADM decomposition of spacetime

$$
d s^{2}=-N^{2} d t^{2}+h_{i j}\left(d x^{i}+N^{i} d t\right)\left(d x^{j}+N^{j} d t\right)
$$

Extrinsic curvature:

$$
K_{i j}=\frac{1}{2 N}\left(\dot{h}_{i j}-D_{i} N_{j}-D_{j} N_{i}\right)
$$

Intrinsic curvature: $R_{i j}$

$$
X \equiv g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi=-\frac{\dot{\phi}^{2}(t)}{N^{2}}
$$

- Generic Lagrangians of the form

$$
S_{g}=\int d^{4} x N \sqrt{h} L\left(N, K_{i j}, R_{i j} ; t\right)
$$

Example: GR + quintessence

- Consider a quintessence model

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{M_{P}^{2}}{2}{ }^{(4)} R-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi)\right]
$$

- In the uniform ϕ slicing, this leads to the Lagrangian

$$
L=\frac{M_{\mathrm{P} 1}^{2}}{2}\left[K_{i j} K^{i j}-K^{2}+R\right]+\frac{\dot{\phi}^{2}(t)}{2 N^{2}}-V(\phi(t))
$$

Homogeneous evolution

- FLRW metric: $d s^{2}=-\bar{N}^{2}(t) d t^{2}+a^{2}(t) \delta_{i j} d x^{i} d x^{j}$
- Extrinsic curvature: $K_{j}^{i}=\frac{\dot{a}}{\bar{N} a} \delta_{j}^{i} \equiv H \delta_{j}^{i}$
- Homogeneous Lagrangian

$$
\bar{L}(a, \dot{a}, \bar{N}) \equiv L\left[K_{j}^{i}=\frac{\dot{a}}{\bar{N} a} \delta_{j}^{i}, R_{j}^{i}=0, N=\bar{N}(t)\right]
$$

- One can include matter by adding the Lagrangian for matter (assumed to be minimally coupled to the metric).

Friedmann equations

- Variation of the action $\quad \bar{S}_{g}=\int d t d^{3} x \bar{N} a^{3} \bar{L}(a, \dot{a}, \bar{N})$

$$
\begin{aligned}
& \text { Using }\left(\frac{\partial L}{\partial K_{i}^{j}}\right)_{\mathrm{bgd}} \equiv \mathcal{F} \delta_{j}^{i}, \quad \text { one finds } \\
& a^{-3} \frac{\delta \bar{S}_{g}}{\delta \bar{N}}=\bar{L}+\bar{N} L_{N}-3 H \mathcal{F}=\rho_{m} \\
& \frac{1}{3 a^{2} \bar{N}} \frac{\delta \bar{S}_{g}}{\delta a}=\bar{L}-3 H \mathcal{F}-\frac{\dot{\mathcal{F}}}{\bar{N}}=-p_{m}
\end{aligned}
$$

- For GR: $\bar{L}_{\mathrm{GR}}=-3 M_{P}^{2} H^{2}, \quad \mathcal{F}_{\mathrm{GR}}=-2 M_{P}^{2} H$

Linear perturbations

- Perturbations

$$
\delta N \equiv N-\bar{N}, \quad \delta K_{j}^{i} \equiv K_{j}^{i}-H \delta_{j}^{i}, \quad \delta R_{j}^{i} \equiv R_{i}^{j}
$$

- Expand the Lagrangian

$$
L\left(q_{A}\right) \quad \text { with } \quad q_{A} \equiv\left\{N, K_{j}^{i}, R_{j}^{i}\right\}
$$

yields

$$
L\left(q_{A}\right)=\bar{L}+\frac{\partial L}{\partial q_{A}} \delta q^{A}+\frac{1}{2} \frac{\partial^{2} L}{\partial q_{A} \partial q_{B}} \delta q_{A} \delta q_{B}+\ldots
$$

- The quadratic action describes the dynamics of linear perturbations

Linear perturbations

- The coefficients are evaluated on the homogeneous background, e.g.

$$
\begin{aligned}
\frac{\partial^{2} L}{\partial K_{i}^{j} \partial K_{k}^{l}} & \equiv \hat{\mathcal{A}}_{K} \delta_{j}^{i} \delta_{l}^{k}+\mathcal{A}_{K}\left(\delta_{l}^{i} \delta_{j}^{k}+\delta^{i k} \delta_{j l}\right) \\
\frac{\partial^{2} L}{\partial R_{i}^{j} \partial R_{k}^{l}} & \rightarrow\left(\hat{\mathcal{A}}_{R}, \mathcal{A}_{R}\right) \quad \frac{\partial^{2} L}{\partial K_{i}^{j} \partial R_{k}^{l}} \rightarrow(\hat{\mathcal{C}}, \mathcal{C}) \quad \ldots
\end{aligned}
$$

- For simplicity, we assume the three conditions

$$
\hat{\mathcal{A}}_{K}+2 \mathcal{A}_{K}=0, \quad \hat{\mathcal{C}}+\frac{1}{2} \mathcal{C}=0, \quad 4 \hat{\mathcal{A}}_{R}+3 \mathcal{A}_{R}=0
$$

so that the EOM are $2^{\text {nd }}$ order in spatial gradients.

Linear perturbations

- Quadratic action in terms of 5 functions of time

$$
\begin{array}{r}
S^{(2)}=\int d x^{3} d t a^{3} \frac{M^{2}}{2}\left[\delta K_{j}^{i} \delta K_{i}^{j}-\delta K^{2}+\alpha_{K} H^{2} \delta N^{2}+4 \alpha_{B} H \delta K \delta N\right. \\
\\
\left.+\left(1+\alpha_{T}\right) \delta_{2}\left(\frac{\sqrt{h}}{a^{3}} R\right)+\left(1+\alpha_{H}\right) R \delta N\right]
\end{array}
$$

- Includes many models

Gleyzes, DL, Piazza \& Vernizzi '13, [notation from Bellini \& Sawicki '14]

- GR: $M=M_{P}, \quad \alpha_{i}=0$
- Quintessence, K-essence: $\alpha_{K} \neq 0$
- Kinetic braiding, DGP: $\alpha_{B} \neq 0$
- Brans-Dicke, $\mathrm{F}(\mathrm{R}): M=M(t)$
- Horndeski: $\alpha_{T} \neq 0$
- beyond Horndeski: $\alpha_{H} \neq 0$

Scalar degree of freedom

- Scalar perturbations: $\quad \delta N, \quad N_{i} \equiv \partial_{i} \psi, \quad h_{i j}=a^{2}(t) e^{2 \zeta} \delta_{i j}$
- Quadratic action for the physical degree of freedom:

$$
\begin{gathered}
S^{(2)}=\frac{1}{2} \int d x^{3} d t a^{3}\left[\mathcal{K}_{t} \dot{\zeta}^{2}+\mathcal{K}_{s} \frac{\left(\partial_{i} \zeta\right)^{2}}{a^{2}}\right] \\
\mathcal{K}_{t} \equiv \frac{\alpha_{K}+6 \alpha_{B}^{2}}{\left(1+\alpha_{B}\right)^{2}}, \quad \mathcal{K}_{s} \equiv 2 M^{2}\left\{1+\alpha_{T}-\frac{1+\alpha_{H}}{1+\alpha_{B}}\left(1+\alpha_{M}-\frac{\dot{H}}{H^{2}}\right)-\frac{1}{H} \frac{d}{d t}\left(\frac{1+\alpha_{H}}{1+\alpha_{B}}\right)\right\}
\end{gathered}
$$

- Stability
- No ghost: $\quad \mathcal{K}_{t}>0$
- No gradient instability: $\quad c_{s}^{2} \equiv-\frac{\mathcal{K}_{s}}{\mathcal{K}_{s}}>0$

Tensor degrees of freedom

- Quadratic action for the tensor modes:

$$
S_{\gamma}^{(2)}=\frac{1}{2} \int d t d^{3} x a^{3}\left[\frac{M^{2}}{4} \dot{\gamma}_{i j}^{2}-\frac{M^{2}}{4}\left(1+\alpha_{T}\right) \frac{\left(\partial_{k} \gamma_{i j}\right)^{2}}{a^{2}}\right]
$$

- Stability
- No ghost: $\quad M^{2}>0$
- No gradient instability: $\quad c_{T}^{2} \equiv 1+\alpha_{T}>0$

Example: Horndeski theories

- Most general scalar-tensor action leading to at most second order equations of motion for the scalar field and metric. Horndeski 74
- Generalized galileons coupled to gravity

Nicolis et al. 08;
Deffayet et al. 09 \& 11

- Combination of the following four Lagrangians

$$
\begin{array}{lr}
L_{2}^{H}=G_{2}(\phi, X) & \text { with }
\end{array} \quad X \equiv \nabla_{\mu} \phi \nabla^{\mu} \phi,{ }_{L_{3}^{H}=G_{3}(\phi, X) \square \phi} \quad \phi_{\mu \nu} \equiv \nabla_{\nu} \nabla_{\mu} \phi
$$

- Higher order derivatives in the Lagrangian

Beyond Horndeski

- $2^{\text {nd }}$ order time derivatives in the Lagrangian usually lead to an extra DOF, which is unstable (Ostrogradski)

$$
\text { e.g. } \quad L(q, \dot{q}, \ddot{q})
$$

- $2^{\text {nd }}$ order EOMs were believed to be necessary to avoid Ostrogradski's ghost but higher order equations of motion are in fact possible.
- Two extensions beyond Horndeski [Gleyzes, DL, Piazza \& Vernizzi '14]

$$
\begin{aligned}
L_{4}^{\mathrm{bH}} & \equiv F_{4}(\phi, X) \epsilon^{\mu \nu \rho}{ }_{\sigma} \epsilon^{\mu^{\prime} \nu^{\prime} \rho^{\prime} \sigma} \phi_{\mu} \phi_{\mu^{\prime}} \phi_{\nu \nu^{\prime}} \phi_{\rho \rho^{\prime}} \\
L_{5}^{\mathrm{bH}} & \equiv F_{5}(\phi, X) \epsilon^{\mu \nu \rho \sigma} \epsilon^{\mu^{\prime} \nu^{\prime} \rho^{\prime} \sigma^{\prime}} \phi_{\mu} \phi_{\mu^{\prime}} \phi_{\nu \nu^{\prime}} \phi_{\rho \rho^{\prime}} \phi_{\sigma \sigma^{\prime}}
\end{aligned}
$$

- Crucial ingredient: $\mathcal{L}\left[\phi, g_{\mu \nu}\right]$ must be degenerate

Horndeski \& beyond in ADM form

- One obtains combinations of the Lagrangians

$$
\begin{aligned}
& L_{2}=A_{2} \quad L_{3}=A_{3} K \\
& L_{4}=A_{4}\left(K^{2}-K_{i j} K^{i j}\right)+B_{4} R \\
& L_{5}=A_{5}\left(K^{3}-3 K K_{i j} K^{i j}+2 K_{i j} K^{i k} K_{k}^{j}\right)+B_{5} K^{i j}\left[R_{i j}-h_{i j} R / 2\right]
\end{aligned}
$$

where the A's and B's depend on the functions G's \& F's.

- Horndeski theories (only four G's) satisfy the relations

$$
\begin{aligned}
& A_{4}=-B_{4}+2 X B_{4 X} \\
& A_{5}=-X B_{5 X} / 3
\end{aligned}
$$

- One can then use the results of the general formalism.

Generalized couplings to matter

Gleyzes, DL, Mancarella \& Vernizzi '15

- Minimal coupling: $S_{m}=S_{m}\left[\psi_{m}, g_{\mu \nu}\right]$
- Conformal coupling: $S_{m}=S_{m}\left[\psi_{m}, C(\phi) g_{\mu \nu}\right]$
- Conformal-disformal couplings

$$
\begin{gathered}
S_{m}^{(I)}=S_{m}^{(I)}\left[\psi_{m}, \check{g}_{\mu \nu}^{(I)}\right] \\
\text { with } \check{g}_{\mu \nu}^{(I)}=C_{I}(\phi) g_{\mu \nu}+D_{I}(\phi) \partial_{\mu} \phi \partial_{\nu} \phi \\
\alpha_{C, I} \equiv \frac{1}{2} \frac{d \ln C_{I}}{d \ln a}, \quad \alpha_{D, I} \equiv \frac{D_{I}}{C_{I}-D_{I}}
\end{gathered}
$$

"Frame" transformation

- Gravity can be described by a different metric

$$
g_{\mu \nu} \longrightarrow \tilde{g}_{\mu \nu}=C(\phi) g_{\mu \nu}+D(\phi) \partial_{\mu} \phi \partial_{\nu} \phi
$$

- Horndeski's structure is invariant [Bettoni \& Liberati '12]

The quadratic action (with $\alpha_{H}=0$ here)

$$
\begin{gathered}
S^{(2)}=\int d x^{3} d t a^{3} \frac{M^{2}}{2}\left[\delta K_{j}^{i} \delta K_{i}^{j}-\delta K^{2}+\alpha_{K} H^{2} \delta N^{2}+4 \alpha_{B} H \delta K \delta N\right. \\
\left.+\left(1+\alpha_{T}\right) \delta_{2}\left(\frac{\sqrt{h}}{a^{3}} R\right)+R \delta N\right]
\end{gathered}
$$

gets transformed into a similar action

$$
\left\{M, \alpha_{K}, \alpha_{B}, \alpha_{T}\right\} \underset{\{C, D\}}{\longrightarrow}\left\{\tilde{M}, \tilde{\alpha}_{K}, \tilde{\alpha}_{B}, \tilde{\alpha}_{T}\right\}
$$

"Frame" transformation

- Metric transformation

$$
\alpha_{C} \equiv \frac{1}{2} \frac{d \ln C}{d \ln a}, \quad \alpha_{D} \equiv \frac{D}{C-D}
$$

- New gravitational coefficients

$$
\begin{gathered}
\tilde{M}^{2}=\frac{M^{2}}{C \sqrt{1+\alpha_{\mathrm{D}}}}, \tilde{\alpha}_{\mathrm{T}}=\left(1+\alpha_{\mathrm{T}}\right)\left(1+\alpha_{\mathrm{D}}\right)-1 \quad \tilde{\alpha}_{\mathrm{B}}=\frac{1+\alpha_{\mathrm{B}}}{\left(1+\alpha_{\mathrm{C}}\right)\left(1+\alpha_{\mathrm{D}}\right)}-1 \\
\tilde{\alpha}_{\mathrm{K}}=\frac{\alpha_{\mathrm{K}}+12 \alpha_{\mathrm{B}}\left[\alpha_{\mathrm{C}}+\left(1+\alpha_{\mathrm{D}}\right) \alpha_{\mathrm{D}}\right]-6\left[\alpha_{\mathrm{C}}+\left(1+\alpha_{\mathrm{D}}\right) \alpha_{\mathrm{D}}\right]^{2}+3 \Omega_{\mathrm{m}} \alpha_{\mathrm{D}}}{\left(1+\alpha_{\mathrm{C}}\right)^{2}\left(1+\alpha_{\mathrm{D}}\right)^{2}}
\end{gathered}
$$

- New matter couplings

$$
\tilde{\alpha}_{\mathrm{C}, I}=\frac{\alpha_{\mathrm{C}, I}-\alpha_{\mathrm{C}}}{1+\alpha_{\mathrm{C}}}
$$

$$
\begin{aligned}
& \left\{\alpha_{C, I}, \alpha_{D, I}\right\} \longrightarrow\left\{\tilde{\alpha}_{C, I}, \tilde{\alpha}_{D, I}\right\} \\
& \tilde{\alpha}_{\mathrm{D}, I}=\frac{\alpha_{\mathrm{D}, I}-\alpha_{\mathrm{D}}}{1+\alpha_{\mathrm{D}}}
\end{aligned}
$$

- N_{S} species: $4+2 \mathrm{~N}_{\mathrm{S}}-2=2\left(\mathrm{~N}_{\mathrm{S}}+1\right)$ independent parameters

Confrontation with observations

- Use a traditional gauge, e.g. Newtonian gauge

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(t)(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

- Description in an arbitrary slicing ?

- Coordinate change $t \rightarrow t+\pi(t, \vec{x})$
- Perturbations: $\Phi, \Psi, \pi, \delta_{m}, \vec{v}_{m}$

Cosmological perturbations

- Standard equations (in GR)

Cosmological perturbations

- Modified equations (minimal coupling)

$$
G_{\mathrm{eff}}=G_{\mathrm{eff}}\left(\alpha_{i}\right), \quad \eta=\eta\left(\alpha_{i}\right)
$$

Quasi-static approximation (valid on scales $k c_{s} \gg a H$ [Sawicki \& Bellini '15])
which can be confronted to observations (RSD, weak lensing, ...).

Cosmological perturbations

- Modified equations (non minimal coupling)

Gleyzes, DL, Mancarella \& Vernizzi '15

- Generalization of coupled quintessence [Amendola '00]

On smaller scales

- Deviations from GR on cosmological scales should be compatible with small-scale observations (solar system, binary systems)
- Screening mechanism

$$
Z\left(\phi_{0}\right) \nabla^{2} \delta \phi-m^{2}\left(\phi_{0}\right) \delta \phi=-\beta\left(\phi_{0}\right) \frac{\delta T}{M_{P}}
$$

- Chameleon: $m\left(\phi_{0}\right)$ is large
- Dilaton \& symmetron: $\beta\left(\phi_{0}\right) \ll 1$
- Vainshtein: $Z\left(\phi_{0}\right) \gg \beta^{2}\left(\phi_{0}\right)$

Example: beyond Horndeski

```
Saito, Yamauchi, Mizuno, Gleyzes & DL `15
    (see also Koyama & Sakstein '15)
```

- Partial breaking of Vainshtein mechanism inside matter

> Kobayashi, Watanabe \& Yamauchi ‘14

- Spherical symmetry \& nonrelativistic limit:

$$
\frac{\mathrm{d} \Phi}{\mathrm{~d} r}=G_{\mathrm{N}}\left(\frac{\mathcal{M}}{r^{2}}-\epsilon \frac{\mathrm{d}^{2} \mathcal{M}}{\mathrm{~d} r^{2}}\right), \quad \mathcal{M}(r)=4 \pi \int_{0}^{r}{r^{\prime}}^{2} \rho\left(r^{\prime}\right) \mathrm{d} r^{\prime}
$$

- Modified Lane-Emden equation

$$
\left(\text { for } P=K \rho^{1+\frac{1}{n}}\right)
$$

- Universal bound $\epsilon<1 / 6$
- Astrophysical constraints [Sakstein '15]

$$
\epsilon>-0.0068
$$

Conclusions

- Unifying description of dark energy and modified gravity models
- Easy comparisons between models
- Identification of degeneracies
- Observational data can constrain many models simultaneously
- Explore unchartered territories (e.g. theories beyond Horndeski)
- Very general and efficient way to describe linear perturbations in scalar-tensor theories with only five time-dependent functions.
- Extension to include non-universal couplings

