

X-ray Spectral timing of Accreting Black Holes

Andy Fabian Institute of Astronomy University of Cambridge

STRONG GRAVITY

Gravitational redshift

Red wing

- Strong Light Bending (radian scale)
 Reflection Strength
- Shapiro delay

Reverberation

Dragging of Inertial Frame

High Spin

Accretion disc

Reflection from cold matter of cosmic abundance

C Reynolds

Probing Black Hole Spin

Accretion disc

Soft excess – broad iron line – Compton hump

Marinucci+14

Soft excess – broad iron line – Compton hump

Parker, Matt+

NGC1365 XMM+NuSTAR

Walton+14

and Galactic sources too

Parker, Tomsick+, JMiller+13,15

Strong light bending close to BH

Martocchia&Matt, Miniutti&Fabian

GR + lightbending make emissivity steep

Change in height of corona more or less light bending

Black Hole Spin from Reflection Spectrum

Thorne74

X-ray Background Spectrum

Path difference leads to <u>reverberation</u>

Broad iron-L and iron-K emission lines (XMM)

Corona is compact

Need to understand anisotropy of corona in order to improve precision on strong gravity

Chartas15

Emissivity profiles enable coronal height and radius to be determined Wilkins+Fabian12

Outflowing Corona

Mild relativistic outflow in corona can beam primary radiation outward

Mkn335

Rise of corona can explain 3.5 keV dip

Wilkins+16

Coronal Collapse

When h drops from 10 to $2r_g$

Into the Abyss

1H0707 Kara+14

Mkn 335 Parker+14

Most emission from 1-2r_g

Mkn 335 Parker+14

Results from within 2 $\rm r_g$

Relativistic Reflection is a common feature of luminous accreting black holes

Spectral-timing analyses reveal inner strong gravity regime

Relativistic Reflection is a common feature of luminous accreting black holes

Strong gravitational effects (redshift, light bending etc) are INEVITABLE

The Near Future

- VERY LONG (Ms) observations of Key Objects will study dynamic behaviour of corona
- Launch of ASTRO-H (scheduled for Feb 12 2016)

IRAS13224-3809 - Example of a key object

STRONG GRAVITY

Gravitational redshift

Red wing

- Strong Light Bending (radian scale)
 Reflection Strength
- Shapiro delay

Reverberation

Dragging of Inertial Frame

High Spin

Summary

- We're now doing Relativistic Astrophysics of the immediate region around accreting black holes – the central engine of quasars.
- Quasars are the most luminous persistent sources in the Universe and, through feedback, determine the final stellar mass of galay bulges

Cackett+13

2D transfer function

Density

Azimuthal field

Reynolds & Fabian 08

Reynolds & Fabian 08

Relativistic Disc Lines are a common feature of luminous accreting black holes

With NuSTAR now considering second order effects

1H0707-495 Fabian+12

NGC1365 XMM+NuSTAR

Walton+14

The *NuSTAR* spectrum of Mrk 335: Extreme relativistic effects within 2 gravitational radii of the event horizon?

M. L. Parker,^{1*} D. R. Wilkins,^{1,2} A. C. Fabian,¹ D. Grupe,³ T. Dauser,⁴ G. Matt,⁵ F. A. Harrison,⁶ L. Brenneman,⁷ S. E. Boggs,⁸ F. E. Christensen,⁹ W. W. Craig,^{10,11} L. C. Gallo,² C. J. Hailey,¹¹ E. Kara,¹ S. Komossa,¹² A. Marinucci,⁵ J. M. Miller,¹³ G. Risaliti,^{7,14} D. Stern,¹⁵ D. J. Walton⁶ and W. W. Zhang¹⁶

Rapid variability in AGN

CORONAL PHYSICS

compactness

Corona lies a few $\rm r_g$ above the disc

Wilkins&Fabian13

Kara+14 SWIFT J2127

WINDS and OUTFLOWS

Broad iron-L and iron-K emission lines (XMM)

