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Gamma-Ray Bursts are 
Cosmological Objects

•Redshifts exist for well-located 
GRBs only:

•Require X-ray, optical 
Afterglow observation

•Spectroscopy of the host 
galaxy &/or intervening 
material

•Almost certainly selected by 
brightness

•Current sample (Aug. 2015): 

•~407; 175 for z > 2

•Includes both short and long

•Photometric redshift limits not 
included

Source: J. Greiner, http://www.mpe.mpg.de/~jcg/grbgen.html
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Low-Energy Index
α = -0.6 ± 0.07

High-Energy Index
β = -3.11 ± 0.07
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Characteristic Energy 
of GRB Spectra

Epeak: only spectral 
shape parameter 
that characterizes 
relative motion:

• Cosmological 
redshift  
~ 1/(1+z)

• Jet Bulk 
Lorentz factor 
~ Γ Briggs et al., 1999



The Epeak Distribution is 
Peaked

Goldstein et al. 2013 (BATSE: 1297) 
& Gruber et al. 2014 (GBM: 680)

• Time-integrated spectra, but 
Peak Flux just as well

• High significance

Effect of detector bandwidth:

• Width is somewhat greater for 
GBM, with much larger 
bandpass

•    Still peaked – no ‘hidden’ 
higher energy peak



Epeak Distribution 
Changes with Brightness

•1421 Spectral fits with ‘good’ Epeak, binned by Peak Flux into 5 intensity groups

•Mean of each distribution shows trend (plot shows error on the mean)

•Shown to be an intrinsic effect; not a selection effect of dimming

•Verifies previous result (Mallozzi ’95) with better statistics:

Preece et al. (sub.)



Shifts are Consistent 
with Cosmology

•Ranges of z derived from the 
shifting of the Epeak 
distributions as a function of 
peak flux: 

•The brightest 20% of bursts 
have assumed min. redshift 
z100 , chosen for bursts with a 
flux of 100 photons cm

–2
 s

–1
. 

•The curves are conventional 
cosmological models: 

•Λ = 0 (qo = l) - dashed

•Λ > 0 (qo = –1) - dotted

•Models were computed for 
three values of z100:  0.08 
(lowest), 0.10, 0.12

Mallozzi et al. ’95
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GRB 
Luminosity Relations

Certain observed properties correlate with the rest-frame 
energy/luminosity

L
bol

L0
= ⇠[O(1 + z)�]⌘ power law

• Amati Relation (Amati et al. 2002): Peak Epeak vs. Sbol

• Ghirlanda Relation (Ghirlanda et al. 2004): Fluence Epeak vs. SbolFbeam

•  Yonetoku Relation (Yonetoku et al. 2004): Peak Epeak vs. Lpeak,iso

• Variability-Luminosity Relation (Fenimore & Ramirez-Ruiz 2000; 
Reichart et al. 2001); etc.



Which Epeak?
•Epeak can vary widely w/in a burst

•All of the Luminosity Relations can’t be 
correct, can they?

•Some depend on Epeak from time-
averaged spectra, others the peak 
spectra

•How independent are these?

•They are clearly correlated!

•1188 GRBs from the BATSE Spectroscopy 
Catalog (Goldstein, 2013)

•BEST fits were either COMP or 
BAND

•2 s Peak Flux value ~ 1.4 times 
larger (on average)

Preece et al. (sub.)

GRB130427A



Why are Epeaks 
Correlated?

•We have investigated an impulsively-
energized GRB pulse model

•Simulated pulses with Norris model

•Power-law Hard-to-Soft Spectral 
evolution

•Bright pulses are well sampled in time

•No matter how high the initial Epeak 
may be: internal distribution peaks at 
mean value

•Internal Photon Flux dist. weights the 
average strongest at the peak

•Result: Peak and Ave. values are 
correlated!

Preece et al. (sub.)
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Estimating the Redshift 
and Distance of GRBs

• Have a calibration sample of GRBs w/ known  z < 1.5 

• Use the sample to calibrate the luminosity relations 
(Schaefer 2003; Firmani et al. 2006)

• Use multiple luminosity relations to estimate the 
redshift and distance of GRBs without known 
redshift (Schaefer and Collazzi 2007)

• The uncertainties arising from marginalizing over 
Cosmological models must be propagated and will 
be proportional to the contribution of uncertainty 
from all luminosity relations combined

Goldstein (in prep.)



Type Ia Supernovae
Estimates on the evolution of dark energy out to z ~ 1.5

ever] accelerating or decelerating?’’) and model-independent
constraints with which to test cosmological models.

Following Turner & Riess (2002), we empirically define
the luminosity distance in Euclidean space (i.e., !total ¼ 1:0;
as motivated by inflation) as the integral of the inverse of
the preceding expansion rate,

dL ¼ c(1þ z)

Z z

0

du

H(u)

¼ c(1þ z)H#1
0

Z z

0

exp #
Z u

0

½1þ q(u)%d ln (1þ u)

! "
du;

ð2Þ

where

H(z) ¼ ȧ

a
; ð3Þ

q(z) ( #ä=a

H2(z)
¼ dH#1(z)

dt
# 1: ð4Þ

Note that equation (2) is not an approximation but is an ex-
act expression for the luminosity distance in a geometrically
flat universe (although generalizable for nonzero curvature),
given an expression for the epoch-dependent deceleration pa-
rameter q(z) and the present Hubble constant H0. Here we
employ equation (2) as a kinematic model of the SN Ia data
with parametric representations for q(z).

Given evidence that the universe has recently been accel-
erating [i.e., q(z ) 0) < 0], hints that it may have once been
decelerating [i.e., q(z > 1) > 0; Riess et al. 2001; Turner &
Riess 2002], and the large leverage in redshift of the current
SN sample, we consider resolving q(z) into two distinct com-
ponents or epochs. A linear two-parameter expansion for q(z)
that is continuous and smooth is q(z) ¼ q0 þ z dq=dz, where
dq=dz is defined to be evaluated at z ¼ 0.

The likelihood for the parameters q0 and dq=dz can be de-
termined from a !2 statistic, where

!2 H0; q0;
dq

dz

# $
¼

X

i

½"p;i(zi;H0; q0; dq=dz)# "0;i%
2

#2
"0;i

þ #2
v

; ð5Þ

#v is the dispersion in supernova redshift (transformed to units
of distance moduli) due to peculiar velocities, and #"0;i

is the
uncertainty in the individual distance moduli. This term also
includes the uncertainty in galaxy redshift. Because of the
extreme redshift of our distant sample and the abundance of
objects in the nearby sample, our analysis is insensitive to the
value that we assume for #v within its likely range of 200 km
s#1 * #v * 500 km s#1. For our analysis we adopt #v ¼
400 km s#1. For high-redshift SNe Ia whose redshifts were
determined from the broad features in the SN spectrum, we
add 2500 km s#1 in quadrature to #v.

Marginalizing our likelihood functions over the nuisance
parameter H0 (by integrating the probability density P /
e#!2=2 for all values of H0) yields the confidence intervals
shown in Figure 5. As shown, both the gold set and the gold
and silver sets together strongly favor a universe with recent
acceleration (q0 < 0) and previous deceleration (dq=dz > 0)
with 99.2% and 99.8% likelihood (summed within this quad-
rant), respectively. With this same model we can also derive
the likelihood function for the transition redshift zt, defined as
q(zt) ¼ 0. Summing the probability density in the q0 versus
dq=dz plane along lines of constant transition redshift, zt ¼
#q0=(dq=dz), yields the likelihood function in Figure 5. We
find a transition redshift of zt ¼ 0:46 + 0:13. In Figure 6 we
show the Hubble diagram for the SNe Ia compared to a dis-
crete set of kinematic models.

An alternate, kinematic model is derived using the first
three time derivatives of the scale factor. Following Visser
(2003), the Hubble, deceleration, and jerk parameters are
defined as

H(t) ¼ þȧ=a; ð6Þ

q(t) ¼ #(ä=a)(ȧ=a)#2; ð7Þ

j(t) ¼ þ ȧ̈=a
% &

ȧ=að Þ#3: ð8Þ

The deceleration and jerk parameters are dimensionless, and
a Taylor expansion of the scale factor around t0 provides

a(t) ¼ a0
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and hence for the luminosity distance (in Euclidean space),

dL(z) ¼
cz
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(see Visser 2003).
Although related, the j0 parameter as defined here and by

Visser (2003) is not precisely equivalent to our previous dq=dz
parameter, providing an alternative parameterization. The SN
subsets constrain the j0 parameter to the positive domain at the
92%–95% confidence level. That is, the expansion history
over the range of the SN data is equally well described by
recent acceleration and a constant jerk. Models with discrete
values of j0 are shown in Figure 6.

Fig. 4.—MLCS2k2 SN Ia Hubble diagram. SNe Ia from ground-based dis-
coveries in the gold sample are shown as diamonds; HST-discovered SNe Ia
are shown as filled symbols. Overplotted is the best fit for a flat cosmology:
!M ¼ 0:29, !" ¼ 0:71.
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Estimating GRB Redshift 
and Distance

ever] accelerating or decelerating?’’) and model-independent
constraints with which to test cosmological models.

Following Turner & Riess (2002), we empirically define
the luminosity distance in Euclidean space (i.e., !total ¼ 1:0;
as motivated by inflation) as the integral of the inverse of
the preceding expansion rate,
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Note that equation (2) is not an approximation but is an ex-
act expression for the luminosity distance in a geometrically
flat universe (although generalizable for nonzero curvature),
given an expression for the epoch-dependent deceleration pa-
rameter q(z) and the present Hubble constant H0. Here we
employ equation (2) as a kinematic model of the SN Ia data
with parametric representations for q(z).

Given evidence that the universe has recently been accel-
erating [i.e., q(z ) 0) < 0], hints that it may have once been
decelerating [i.e., q(z > 1) > 0; Riess et al. 2001; Turner &
Riess 2002], and the large leverage in redshift of the current
SN sample, we consider resolving q(z) into two distinct com-
ponents or epochs. A linear two-parameter expansion for q(z)
that is continuous and smooth is q(z) ¼ q0 þ z dq=dz, where
dq=dz is defined to be evaluated at z ¼ 0.

The likelihood for the parameters q0 and dq=dz can be de-
termined from a !2 statistic, where
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#v is the dispersion in supernova redshift (transformed to units
of distance moduli) due to peculiar velocities, and #"0;i

is the
uncertainty in the individual distance moduli. This term also
includes the uncertainty in galaxy redshift. Because of the
extreme redshift of our distant sample and the abundance of
objects in the nearby sample, our analysis is insensitive to the
value that we assume for #v within its likely range of 200 km
s#1 * #v * 500 km s#1. For our analysis we adopt #v ¼
400 km s#1. For high-redshift SNe Ia whose redshifts were
determined from the broad features in the SN spectrum, we
add 2500 km s#1 in quadrature to #v.

Marginalizing our likelihood functions over the nuisance
parameter H0 (by integrating the probability density P /
e#!2=2 for all values of H0) yields the confidence intervals
shown in Figure 5. As shown, both the gold set and the gold
and silver sets together strongly favor a universe with recent
acceleration (q0 < 0) and previous deceleration (dq=dz > 0)
with 99.2% and 99.8% likelihood (summed within this quad-
rant), respectively. With this same model we can also derive
the likelihood function for the transition redshift zt, defined as
q(zt) ¼ 0. Summing the probability density in the q0 versus
dq=dz plane along lines of constant transition redshift, zt ¼
#q0=(dq=dz), yields the likelihood function in Figure 5. We
find a transition redshift of zt ¼ 0:46 + 0:13. In Figure 6 we
show the Hubble diagram for the SNe Ia compared to a dis-
crete set of kinematic models.

An alternate, kinematic model is derived using the first
three time derivatives of the scale factor. Following Visser
(2003), the Hubble, deceleration, and jerk parameters are
defined as

H(t) ¼ þȧ=a; ð6Þ

q(t) ¼ #(ä=a)(ȧ=a)#2; ð7Þ
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(see Visser 2003).
Although related, the j0 parameter as defined here and by

Visser (2003) is not precisely equivalent to our previous dq=dz
parameter, providing an alternative parameterization. The SN
subsets constrain the j0 parameter to the positive domain at the
92%–95% confidence level. That is, the expansion history
over the range of the SN data is equally well described by
recent acceleration and a constant jerk. Models with discrete
values of j0 are shown in Figure 6.

Fig. 4.—MLCS2k2 SN Ia Hubble diagram. SNe Ia from ground-based dis-
coveries in the gold sample are shown as diamonds; HST-discovered SNe Ia
are shown as filled symbols. Overplotted is the best fit for a flat cosmology:
!M ¼ 0:29, !" ¼ 0:71.
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Conclusions
• GRBs are Cosmological objects w/ high redshifts

• There is an intrinsic correlation between the observed Epeak and 
intensity with hints of Cosmology

• There is an observed correlation between Peak and Fluence 
spectra derived Epeak

• Various GRB Luminosity Relations purport to determine 
redshifts from observables

• Some may be dominated by selection effects

• Determination of Cosmological parameters directly using 
these is circular

• Must be calibrated using GRBs w/ known redshifts

• Construction of non-circular GRB Hubble Diagram is on-going



Amati et al. (2002) 
Relation

All bursts should lie above 
the solid line!

Band & Preece 2005 •BATSE (all bursts - 
dots) and Friedman & 
Bloom (2005; 
diamonds - known 
redshifts)

•Invert relation to find 
redshift (assumes the 
Cosmology is known!)

•Suffers from possible 
selection effects



Ghirlanda Relation
Time-integrated Epeak

Collimation-corrected Energy

E� =
4⇡F�d2

LfBk

1 + z
fB = 1� cos ✓j
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Figure 2. Prompt and afterglow lightcurves for the redshift z = 6.29 GRB
050904 at hard x-ray (BAT, 50 keV), x-ray (XRT, 5 keV), and near-infrared
(J-band, 1.1 µm; and I-band, 9500 Å) frequencies. A bright early flare is seen in
the NIR and x-ray; in the x-ray this is followed by extensive flaring activity for
more than a day after the burst. Power-law decay indices measured in the NIR
(αo) are indicated, where available; a likely jet break is seen at t ≈ 2.3 days [20].
Data from [16], [18]–[20].

t3 ∼ 105 s, or in some cases longer; (4) In some cases, a steeper x-ray decay at the end, FX ∝ t−α4 ,
with 2 ! α4 ! 3, after t4 ∼ 105 s, resembling what is expected from jet breaks; (5) in about half
the afterglows, one or more x-ray flares or bumps are observed in the light curve, sometimes
starting as early as 100 s after trigger, and sometimes as late as 105 s. The energy in these flares
ranges from a percent up to a value comparable to the prompt emission (in GRB 050502b).
The rise and decay times of these flares is unusually steep, depending on the reference time
t0, behaving as (t − t0)

±αfl with 3 ! αfl ! 6, and energy indices which can be also steeper than
during the smooth decay portions. The flux level after the flare usually decays to the value
extrapolated from the value before the flare rise.

1.3. Very high-redshift bursts

Another major advance achieved by Swift was the detection of the long burst GRB 050904, which
broke the z > 6 redshift barrier. This burst was very bright, both in its prompt γ-ray emission
(Eγ,iso ∼ 1054 erg) and in its x-ray afterglow. Prompt ground-based optical/IR upper limits and a
J-band detection suggested a photometric redshift z > 6 [16]. Spectroscopic confirmation with
the 8.2 m Subaru telescope gave z = 6.29 [11]. There are several striking features to this burst.
One is its enormous x-ray brightness, exceeding for a full day the x-ray brightness of the most
distant quasar known to-date, SDSS J0130 + 0524—and exceeding it by a factor of 105 in the first
minutes [17]. The implications for the use of GRBs as a tool for probing the IGM are thought-
provoking. Another notable feature was its extremely variable x-ray light curve, showing many
large amplitude flares throughout the first day (figure 2). A third exciting feature is its brief,

New Journal of Physics 8 (2006) 199 (http://www.njp.org/)



Ghirlanda Relation
Consequence of viewing 
geometry and relativistic 
effects within standard jet 
model

� = ✓j � ✓v
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