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Bulk Properties of Strongly-Interacting Matter
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Equation of State
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Reactions - coarse. Structure - detailed, but competition of
macroscopic & microscopic effects
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Energy in Uniform Matter
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Importance of Slope
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Symmetry-Energy Connections
Symmetry energy ties research efforts in nuclear physics &
astrophysics:

diagram by Andrew Steiner
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Symmetry Energy in Nuclear Mass Formula
Textbook Bethe-Weizsäcker formula:

E = −aV A + aS A2/3 + aC
Z 2
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Analogy with capacitor:
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TF breaks in nuclear surface at ρ < ρ0/4 PD&Lee NPA818(2009)36
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Mass Formula & Isospin Symmetry
Symmetry-energy details in a mass-formula are intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N − Z )/A - A
correlations along stability line (PD)!
Best would be to study the symmetry energy in isolation from
the rest of mass-formula! Absurd?!
Charge invariance to rescue: lowest nuclear states
characterized by different isospin values (T ,Tz),
Tz = (Z − N)/2. Nuclear energy scalar in isospin space:

sym energy Ea = aa(A)
(N − Z )2

A
= 4 aa(A)

T 2
z

A

→ Ea = 4 aa(A)
T 2

A
= 4 aa(A)

T (T + 1)

A
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Isobaric Chains and Symmetry Coefficients
Energy Levels of A=16 Isobaric Chain 

T=1 Isobaric
Analog
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m
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Symmetry Coefficient Nucleus-by-Nucleus
Mass formula generalized to the lowest state of a given T :

E(A,T ,Tz) = E0(A) + 4aa(A)
T (T + 1)

A
+ Emic + ECoul

In the ground state T takes on the lowest possible value
T = |Tz | = |N − Z |/2. Through ’+1’ most of the Wigner term absorbed.

?Lowest state of a given T : isobaric analogue state (IAS) of
some neighboring nucleus ground-state.

T=0

T=1

Tz=-1 Tz=1Tz=0

Study of changes in the
symmetry term possible
nucleus by nucleus

E∗IAS = ∆E = aa
∆
[
T (T + 1)

]
A

+ ∆Emic
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From aa(A) to S(ρ)
Strong aa(A) dependence [PD & Lee NPA922(14)1]:
lower A⇒ more surface⇒ lower ρ⇒ lower S

aa(A) from IAS give rise to constraints on S(ρ) in
Skyrme-Hartree-Fock calculations
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Auxiliary Info: n-p Difference in rms Radii
Results f/different Skyrme
ints in half-∞ matter.

Isoscalar (ρ=ρn+ρp; blue)
& isovector (ρn-ρp; green)
densities displaced
relative to each other.

As S(ρ) changes,
so does displacement.
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Strategies for n and p Densities
Jefferson Lab
(talk by Deconinck)
Direct: ∼ p
Interference: ∼ n

PD
elastic: ∼ p + n
charge exchange: ∼ n − p

p

p

σ

ρn+ρp

p

n

π+

ρn−ρp

IAS
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Subnormal S(ρ) from Different Data
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Comparison to Microscopic Calculations

APR: V18 + UVIXBHF: V18 + UVIXDBHF: Bonn A
BHF: V18 + micro 3NBHF: Bonn B + micro 3N

extrapolationIAS + rnp constraints

Microscopic results from Baldo et al PRC87(13)045803
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Pions as Probe of High-ρ Symmetry Energy
B-A Li: S(ρ > ρ0)⇒ n/pρ>ρ0 ⇒ π−/π+
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Dedicated Experimental Efforts
SAMURAI-TPC Collaboration (8 countries and 43
researchers): comparisons of near-threshold π− and π+ and
also n-p spectra and flows at RIKEN, Japan.

NSCL/MSU, Texas A&M U
Western Michigan U, U of Notre Dame
GSI, Daresbury Lab, INFN/LNS
U of Budapest, SUBATECH, GANIL
China IAE, Brazil, RIKEN, Rikkyo U
Tohoku U, Kyoto U

AT-TPC Collaboration (US & France)
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FOPI: π−/π+ at 400 MeV/nucl and above
Hong & PD, PRC90(14)024605: measured ratios reproduced
in transport irrespectively of Sint(ρ) = S0 (ρ/ρ0)γ :
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Original Idea Still Correct for High-E π’s
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Sint(ρ) = S0 (ρ/ρ0)γ → charge-exchange reactions blur signal
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Conclusions
Symmetry-energy term weakens as nuclear mass number
decreases: from aa ∼ 23 Mev to aa ∼ 9 MeV for A . 8.

Weakening of the symmetry term can be tied to the
weakening of S(ρ) in uniform matter, with the fall of ρ.

While significant constraints result from IAS at the
moderately subnormal densities, asymmetry skin
information is needed to constrain S(ρ) around ρ0.

New information on the skins is forthcoming.

In the region of ρ & ρ0, S(ρ) is quite uncertain. One
promising observable is the high-energy charged-pion
yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD PRC90(14)024605
NSF PHY-1068571 & PHY-1403906
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