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normal S(p)
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Energy in Uniform Matter
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Importance of Slope
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normal S(p)

AS & Subnorm

Symmetry-Energy Connections
Symmetry energy ties research efforts in nuclear physics &
astrophysics:

Isospin Dependence of Strong Interactions
i

+ n Collisions
Multi-Fragmentation
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Nuclear Masses Fission
Neutron Skin Thickness Nuclei Far from Stability Isospin Fractionation
o o ! i
Isovector Giant Dipole Resonances Rare Isotope Beams ;m;;‘:,s °§i ,‘;.,gsim,

T
Many-Body Theory
Symmetry Energy
(Magnitude and Density Dependence)
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r T T
Supernovae Proto-Neutron Stars Neutron Stars Binary Mergers
Weak Interactions v Opacities Observational Decompression/Ejection
Early Rise of L, . v Emissivities Properties of Neutron-Star Matter
Bounce Dynamics SN r-Process r-Process
Binding Energy Metastability
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QPO's NS Cooling ~ X-ray Bursters ~ Gravity Waves Pulsars
Mass Temperature Rz Mass/Radius . Mai:e:
. pin Rates
Radius : R,z CLRY Moments of Inertia
Dlrect'Urca e - Magnetic Fields
Superfluid Gaps Maximum Mass, Radius Glitches - Crust
Composition:

L 1

Hyperons, Deconfined Quarks
Kaon/Pion Condensates

diagram by Andrew Steiner
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Mass Formula, IAS & Subnormal S(p)
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Symmetry Energy in Nuclear Mass Formula
Textbook Bethe-Weizsacker form2ula:

Z N — Z)?
E:—avA+asA2/3+30A1/3+aa(A)+Emic

Symmetry energy: charge n «» p symmetry of interactions

independent capacitors
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Mass Formula, IAS & Subnormal S(p)
o

Symmetry Energy in Nuclear Mass Formula
Textbook Bethe-Weizsacker form2ula:

Z N — Z)?
E= —aVA+asA2/3+aCW —l-aa% + Emic
Symmetry energy: charge n «» p symmetry of interactions

Analogy with capacitor:

N2 (N-2ZP @
E,=a, A = y: @E72C

aa

independent capacitors
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Mass Formula, IAS & Subnormal S(p)
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Symmetry Energy in Nuclear Mass Formula
Textbook Bethe-Weizsacker form2ula:

Z N — Z)?
E:—avA+asA2/3+30A1/3+aa(A)+Emic

Symmetry energy: charge n «» p symmetry of interactions
Analogy with capacitor:

Q
L (IN-22_(N-272 . @
Fa=aa—7— = A “E=3¢c
| N-2)2 (N-2)?
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Mass Formula, IAS & Subnormal S(p)
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Symmetry Energy in Nuclear Mass Formula
Textbook Bethe-Weizsacker form2ula:

Z N — Z)?
E:—avA+asA2/3+30A1/3+aa(A)+Emic

Symmetry energy: charge n «» p symmetry of interactions
Analogy with capacitor:

Q
N2 (N-2ZP @
E,=a, A = aA < E = 5C
. N —2)? N —Z)?
?Volume Capacitance? E, = ( y ) — (A Az)/a
2 al e
independent capacitors
Thomas-Fermi (local density) approximation:
A " pdr A
'C'= = =, for S(p)=aY
a(A) ] S(p) &y’ “[©
, o

TF breaks in nuclear surface at p < po/4 PD&Lee NPA818(2009)36
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Mass Formula, IAS & Subnormal S(p)
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Mass Formula & Isospin Symmetry

Symmetry-energy details in a mass-formula are intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N — Z)/A- A
correlations along stability line (PD)!
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Mass Formula, IAS & Subnormal S(p)
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Mass Formula & Isospin Symmetry

Symmetry-energy details in a mass-formula are intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N — Z)/A- A
correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from
the rest of mass-formula! Absurd?!
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Mass Formula, IAS & Subnormal S(p)
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Mass Formula & Isospin Symmetry

Symmetry-energy details in a mass-formula are intertwined
with details of other terms: Coulomb, Wigner & pairing + even
those asymmetry-independent, due to (N — Z)/A- A
correlations along stability line (PD)!

Best would be to study the symmetry energy in isolation from
the rest of mass-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states
characterized by different isospin values (T, T),
T, = (Z — N)/2. Nuclear energy scalar in isospin space:

—7)2 2

sym energy Ea = as(A) (NAZ) =4 a,4(A) %
T2 (T +1
NSCL
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Mass Formula, IAS & Subnormal S(p)
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Isobaric Chains and Symmetry Coefficients
Energy Levels of A=16 Isobaric Chain

T=1 Isobaric
Analog
States

Energy
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Mass Formula, IAS & Subnormal S(p)
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Symmetry Coefficient Nucleus-by-Nucleus
Mass formula generalized to the lowest state of a given T:
T(T+1
E(AT.T) = Eo(A) + 4aa(A) "D 4 By By
In the ground state T takes on the lowest possible value
T =|T;| = |N — Z|/2. Through '+1" most of the Wigner term absorbed.

?Lowest state of a given T: isobaric analogue state (IAS) of
some neighboring nucleus ground-state.
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Mass Formula, IAS & Subnormal S(p)
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From as(A) to S(p)
Strong a(A) dependence [PD & Lee NPA922(14)1]:
lower A = more surface = lower p = lower S
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Mass Formula, IAS & Subnormal S(p)
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Auxiliary Info: n-p Difference in rms Radii
‘ ‘ ‘ Results f/different Skyrme
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Mass Formula, IAS & Subnormal S(p)
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Strategies for n and p Densities

Jefferson Lab PD

(talk by Deconinck) elastic: ~p+n

Direct: ~ p charge exchange: ~ n—p
Interference: ~ n @
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Mass Formula, IAS & Subnormal S(p)
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Subnormal S(p) from Different Data
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parison to Microsco
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Supranormal S(p)
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Pions as Probe of High-p Symmetry Energy
B-ALi: S(p > po) = N/Ppsp, = 7 /7
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Supranormal S(p)
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Dedicated Experimental Efforts
SAMURAI-TPC Collaboration (8 countries and 43
researchers): comparisons of near-threshold =~ and = and
als,\?srgﬁ/?\;l)gatrg]l_ and fk)él(\l'\j ellJt RIKEN, Japan. /

, Texas P e
Western Michigan U, U of Notre Dame @
GSI, Daresbury Lab, INFN/LNS ]
U of Budapest, SUBATECH, GANIL
China IAE, Brazil, RIKEN, Rikkyo U
Tohoku U, Kyoto U

AT-TPC Collaboration (US & France)
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Supranormal S(p)

[e]e] lo)

FOPI: 7= /=" at 400 MeV/nucl and above
Hong & PD, PRC90(14)024605: measured ratios reproduced

in transport irrespectively of Sini(p) = So (p/po)”:
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Supranormal S(p)
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Original Idea Still Correct for High-E 7’s
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Conclusions
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Conclusions

@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.
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Conclusions

@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.

@ Weakening of the symmetry term can be tied to the
weakening of S(p) in uniform matter, with the fall of p.
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Conclusions

@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.

@ Weakening of the symmetry term can be tied to the
weakening of S(p) in uniform matter, with the fall of p.

@ While significant constraints result from IAS at the
moderately subnormal densities, asymmetry skin
information is needed to constrain S(p) around po.
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@ Weakening of the symmetry term can be tied to the
weakening of S(p) in uniform matter, with the fall of p.

@ While significant constraints result from IAS at the
moderately subnormal densities, asymmetry skin
information is needed to constrain S(p) around po.

@ New information on the skins is forthcoming.
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Conclusions

@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.

@ Weakening of the symmetry term can be tied to the
weakening of S(p) in uniform matter, with the fall of p.

@ While significant constraints result from IAS at the
moderately subnormal densities, asymmetry skin
information is needed to constrain S(p) around po.

@ New information on the skins is forthcoming.

@ In the region of p = pg, S(p) is quite uncertain. One
promising observable is the high-energy charged-pion
yield-ratio around NN threshold.
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Conclusions

@ Symmetry-energy term weakens as nuclear mass number
decreases: from a; ~ 23 Mev to a; ~ 9MeV for A < 8.

@ Weakening of the symmetry term can be tied to the
weakening of S(p) in uniform matter, with the fall of p.

@ While significant constraints result from IAS at the
moderately subnormal densities, asymmetry skin
information is needed to constrain S(p) around po.

@ New information on the skins is forthcoming.

@ In the region of p = pg, S(p) is quite uncertain. One
promising observable is the high-energy charged-pion
yield-ratio around NN threshold.

PD&Lee NPA922(14)1; Hong&PD PRC90(14)024605
NSF PHY-1068571 & PHY-1403906
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