Boltzmann dynamics, temperature dependence of energy loss and coalescence: Towards an understanding of the R<sub>AA</sub> and v<sub>2</sub> for D-Mesons

F. Scardina University of Catania INFN-LNS



V. Greco S. K. Das S. Plumari

The 31<sup>th</sup> Winter Workshop on Nuclear Dynamics

## Outline

 The puzzling Relation between R<sub>AA</sub> and v<sub>2</sub> for Heavy Flavors
 T-dependence of the interaction
 Transport vs Fokker-Planck approach
 Hadronization: Coalescence and Fragmentation

 $\succ$  cc angular correlation

The 31<sup>th</sup> Winter Workshop on Nuclear Dynamics

## **Introduction Heavy Quarks**

#### HQ are ideal probes to study the QGP

- ✓  $M_{HQ} >> \Lambda_{QDC}$  ( $M_{charm}$  ≅ 1.3 GeV;  $M_{bottom}$  ≅ 4.2 GeV)
- ✓ M<sub>HQ</sub> >> T

### Before the first experimental results at RHIC: It was expected HQ not dragged by the expanding medium:

- spectra close to the pp one-> large  $R_{AA}$
- small elliptic flow v<sub>2</sub>

$$R_{AA}(p_{T}) = \frac{1}{N_{coll}} \frac{d^{2}N^{AA} / dp_{T} dy}{d^{2}N^{pp} / dp_{T} dy}$$

$$v_2 = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle$$

### R<sub>AA</sub> of Heavy Quarks RHIC



[PHENIX: PRL98(2007)172301]

### Small R<sub>AA</sub> not so different from that of light flavor

## $R_{AA}$ and $V_2$



Again at LHC energy heavy flavor suppression is similar to light flavor: small  $R_{AA},$  large  $v_2$ 

### Standard Description of HQ propagation in the QGP



#### Fokker-Plank approach

$$\frac{\partial f_{c,b}}{\partial t} = \gamma \frac{\partial (pf_{c,b})}{\partial p} + D \frac{\partial^2 f_{c,b}}{\partial p^2}$$

The interaction is encoded in the drag and diffusion coefficents

$$\gamma p = \int d^3k \left| M(k, p) \right|^2 p \qquad D = \frac{1}{2} \int d^3k \left| M(k, p) \right|^2 p$$

Evaluated from scattering matrix |M|<sup>2</sup>

drag evaluated from pqcd ->  $R_{AA}$  larger than exp. data ->  $v_2$  smaller than exp. data

Heavy Quark strongly dragged by interaction with light quarks, the real cross section is a K factor larger?

## $R_{AA}$ and $v_2$ correlation

The larger k the smaller the  $R_{AA}$ , the larger the  $v_2$ 

It is possible to reproduce  $R_{AA}$  multiplying the drag by a k-factor It is not possible to reproduce both  $R_{AA}$  and  $v_2$  with the same k-factor

## Reproducing both is not only an issue of the strength of the interaction

The temperature dependence of the interaction plays a rule This is general, seen also for light quarks [Scardina, Di Toro, Greco, PRC82(2010)] [J.Liao and E. Shuryak PRL 102 (2009)]

# T- dependence of the Drag Coefficient



#### pQCD (Combridge cross-section)

$$a_{pQCD} = \frac{4p}{11ln(2pTL^{-1})}$$
,  $m_D^2 = 4pa_{pQCD}(T)T$ 

 $\frac{\text{AdS/CFT}}{\text{g}_{\text{AdS/CFT}}} = k \frac{\text{T}^2}{\text{M}}$ 

[Akamatsu-Hatsuda-Hirnao, PRC79 (09) 054907] [S. K. Das PRC89 (2014) 054912]

 $\underline{a_{QPM}(T)}, \underline{m_{q,g}=0}$ 

we mean simply the coupling of the QPM, but with a bulk of massless q and g

#### Quasi-Particle-Model (fit to IQCD e,P)

$$g_{QP}^2(T) = \frac{48\pi^2}{(11N_c - 2N_f)\ln\left[\lambda\left(\frac{T}{T_c} - \frac{T_s}{T_c}\right)\right]^2}$$

$$m_g^2 = \frac{1}{6} \left( N_c + \frac{1}{2} N_f \right) g^2 T^2 \qquad m_q^2 = \frac{N_c^2 - 1}{8N_c} g^2 T^2$$

[S.Plumari et al PRD 84 094004 (2011)]

## Impact of T-dependence of the Drag Au+Au@200AGeV, b=8 fm

Interaction rescaled to have very similar R<sub>AA</sub> for all the cases



R<sub>AA</sub>(p<sub>T</sub>) well reproduced whatever is the T-dependence

At fixed R<sub>AA</sub>(p<sub>T</sub>) -> v<sub>2</sub>(p<sub>T</sub>) quite larger if T -> T<sub>c</sub>

## Impact of T-dependence of the Drag

LHC - Pb+Pb@2.76ATeV



Similar trends as for RHIC case

### T-matrix approach: scattering under V(r,T)

Hadronic bound states can survive at temperature larger than T<sub>c</sub>



The interaction potential V(r,T) can be evaluated employing T-matrix scattering theory

#### **Resonant Scattering**



The resonant scattering tends to compensate the decrease by the density scatters because takes into account that V(r,T) becomes stronger close to Tc

T-matrix approach produces a quite large v<sub>2</sub> because of the T-dependence of interaction

## **Transport theory**



Describes the evolution of the one body distribution function f(x,p)

#### It is valid to study the evolution of both bulk and Heavy quarks



To solve numerically the B-E we divide the space into a 3-D lattice and we use the standard test particle method to sample f(x,p)

## **Transport theory**

Collision integral (stochastic algorithm)

$$C_{22} = \int d^{3}k \left[ \omega(p+k,k) f_{HQ}(p+k) - \omega(p,k) f_{HQ}(p) \right]$$

$$\omega(p,k) = g \int \frac{d^3 q}{(2\pi)^3} f'(q) v_{rel} \sigma_{p,q \to p-k,q+k}$$

 $\omega(p,k)$  is the transition rate for collisions of HQ with heath bath changing the HQ momentum from p to p-k

Collision integral (stochastic algorithm)

$$P_{22} = \frac{\Delta N_{coll}}{\Delta N_{HQ} \Delta N_g} = v_{rel} \sigma_{p,q \to p-k,q+k} \frac{\Delta t}{\Delta^3 x}$$

## **Fokker Planck equation**

HQ interactions are conveniently encoded in transport coefficients that are related to elastic scattering matrix elements on light partons.

#### The Fokker Planck eq can be derived from the B-E



## **Fokker Planck equation**

$$\omega(p+k,k)f(p+k) \approx \omega(p,k)f(p) + k \cdot \frac{\partial}{\partial p}(\omega f) + \frac{1}{2}k_i k_j \frac{\partial^2}{\partial p_i \partial p_j}(\omega f)$$

$$C_{22} \cong \int d^{3}k \left[ k_{i} \frac{\partial}{\partial p_{i}} \left( \omega f \right) + \frac{1}{2} k_{i} k_{j} \frac{\partial^{2}}{\partial p_{i} \partial p_{j}} \right] \omega(p, k) f(p)$$

$$\frac{\partial \mathbf{f}}{\partial \mathbf{t}} = \frac{\partial}{\partial \mathbf{p}_{i}} \left[ \mathbf{A}_{i}(\mathbf{p})\mathbf{f} + \frac{\partial}{\partial \mathbf{p}_{j}} \left[ \mathbf{B}_{ij}(\mathbf{p})\mathbf{f} \right] \right]$$

where we have defined the kernels  $\mathbf{A}_{i} = \int \mathbf{d}^{3} \mathbf{k} \boldsymbol{\omega}(\mathbf{p}, \mathbf{k}) \mathbf{k}_{i} \quad \rightarrow \mathbf{Drag} \, \mathbf{Coefficient}$ 

 $B_{ij} = \int d^3 k \omega(p,k) k_i k_j \rightarrow \text{Diffusion Coefficient}$ 

Where  $B_{ij}$  can be divided in a longitudinal and in a transverse component  $B_0$ ,  $B_1$ 

[B. Svetitsky PRD 37(1987)2484]

## Langevin Equation

The Fokker-Planck equation is equivalent to an ordinary stochastic differential equation

$$dx_{j} = \frac{p_{j}}{E} dt$$
$$dp_{j} = -\Gamma p_{j} dt + \sqrt{dt} C_{jk}(t, p + \xi dp) \rho_{k}$$

 $\Gamma$  is the deterministic friction (drag) force

 $C_{ij}$  is a stochastic force in terms of independent Gaussian-normal distributed random variable  $\rho = (\rho_x, \rho_y, \rho_z)$ 

$$P(\rho) = \left(\frac{1}{2\pi}\right)^3 exp(-\frac{\rho^2}{2})$$

#### ρ obey the relations:

$$< \rho_i(t) >= 0 \qquad < \rho_i(t) \rho_k(t') >= \delta(t-t')\delta_{jk}$$

the covariance matrix and  $\Gamma$  are  $\ related$  to the diffusion matrix and to the drag coefficient by

$$C_{jk} = \sqrt{2B_0} P_{jk}^{\perp} + \sqrt{2B_1} P_{jk}^{\parallel}$$

$$A_{i} = p_{j} \Gamma - \xi C_{lk} \frac{\partial C_{ij}}{\partial p_{l}}$$

## **Evaluation of Drag and diffussion**

Common approach between LV and BM

#### Langevin approach

For Collision Process the A<sub>i</sub> and B<sub>ij</sub> can be calculated as following :

#### Boltzmann approach

$$M \rightarrow A_i, B_{ij}$$

$$A_{i} = \frac{1}{2E_{p}} \int \frac{d^{3}q}{(2\pi)^{3} 2E_{q}} \int \frac{d^{3}q'}{(2\pi)^{3} 2E_{q'}} \int \frac{d^{3}p'}{(2\pi)^{3} 2E_{p'}} \frac{1}{\gamma_{c}} \sum |M|^{2}$$

$$(2\pi)^{4} \delta^{4} (p+q-p'-q') f(q) [(p-p')_{i}] = \langle \langle (p-p')_{i} \rangle \rangle$$

$$\sigma_{gc \to gc} = \frac{1}{16\pi (s - M_c^2)^2} \int_{-(s - M^2)^2/s}^{0} dt \sum |M|^2$$

**M** -> σ

$$B_{ij} = \frac{1}{2} \left\langle \left\langle (p - p')_i (p' - p)_j \right\rangle \right\rangle$$

### Mean momentum evolution in a static medium



We consider as initial distribution in p-space a  $\delta(p-1.1GeV)$  for both C and B with  $p_x=(1/3)p$ 



Each component of average momentuma evolves according to  $<\mathbf{p}_i>=\mathbf{p}_i^0\exp(-\gamma t)$  where 1/  $\gamma$  is the relaxation time to equilibrium ( $\tau$ )

 $\tau_{\rm b}/\tau_{\rm c}$ =2.55 $\cong$ m<sub>b</sub>/m<sub>c</sub>

For a very inclusive quantity BM and LV give same result

## **Boltzmann vs Langevin (Charm)**



We have plotted the results as a ratio between LV and BM at different time to quantify how much the ratio differs from 1

[S. K. Das , F. Scardina, V. Greco PRC90 044901 (2014)]

### Is the charm really Heavy and its scattering soft ?

We studied the effect of the mass and of the momentum transferred on the approximation involved in the F-P

## **Boltzmann vs Langevin (Bottom)**



In bottom case Langevin approximation gives results similar to Boltzmann

The Larger M the Better Langevin approximation works

[S. K. Das , F. Scardina, V. Greco PRC90 044901 (2014)]

## **Boltzmann vs Langevin (Charm)**

simulating different average momentum transfer



Decreasing  $m_D$  makes the  $\sigma$  more anisotropic  $\Longrightarrow$ Smaller average momentum transfer

## Boltzmann vs Langevin (Charm)



### R<sub>AA</sub> and v<sub>2</sub> Boltzmann vs Langevin

#### Au+Au@200AGeV, b=8 fm



✓ Fixed same R<sub>AA</sub>(p<sub>T</sub>) [reduce γ by 40%] → v<sub>2</sub>(p<sub>T</sub>) 35% higher (m<sub>D</sub>=1.6 GeV)
 - dependence on the specific scattering matrix (isotropic case -> larger effect)

Hadronization by coalescence not included [S. K. Das , F. Scardina, V. Greco PRC90 044901 (2014)]

## v<sub>2</sub> Boltzmann vs Langevin

Impact of the Boltzmann dynamics for  $\alpha_{OPM}(T)$  case



No coalescence included, only fragmentation

### Impact of hadronization mechanism



Hees-Mannarelli-Greco-Rapp, PRL100 (2008)

$$\frac{d^{3}N_{D,B}}{d^{3}P} = C_{D,B} \int_{\Sigma} f_{c,b} \otimes f_{\overline{q}} \otimes \Phi_{M} + \int_{\Sigma} f_{c,b} \otimes D_{c,b \to D,B}$$

 $f_q$  from  $\pi$ ,  $\overline{K}$ Greco, Ko, Levai - PRL90



### Summary on the build-up of $v_2$ at fixed $R_{AA}$



 $R_{AA}$  and  $V_2$  are correlated but still one can have  $R_{AA}$  about the same while  $V_2$  can change up to a factor 3:  $\gamma(T)$  + Boltzmann dynamics+ hadronization

### **Energy loss of a single HQ**



T=400 MeV Mc/T ≈ 3 Mb/T ≈ 10 [F. ScardinaJ.Phys.Conf.Ser. 535 (2014) 012019]

### **Back to Back correlation**



Initial  $\delta(p=10)$  can be tought as a Near side charm with momentum equal 10 Final distribution can be tought as the momentum probability distribution to find an Away side charm



Boltzmann implies a larger momentum spread

### Langevin vs Boltzmann angular correlation





The larger spread of momentum with the Boltzmann implicates a large spread in the angular distributions of the Away side charm

Striking difference also at  $\Delta \phi = 0$ :

- The evolution of the yield from 2 to 5 GeV is about 50 times different

## Summary

- ✓ The exp. data for R<sub>AA</sub> and v<sub>2</sub> seem to indicate an interaction about constant in T
- $\checkmark$  Boltzmann is more efficient in building up the v<sub>2</sub> related to HQ
- ✓ The more one looks at differential observables  $R_{AA}$ -> $V_2$ ->  $dN_{cc}/d\Delta\phi$ the more the differences between the BM and F-P approach increases
- We can realize that charm in hot QGP is not that heavy and the motion not really Brownian
- $\checkmark$  Very similar dynamics for Bottom at least for R<sub>AA</sub> and V<sub>2</sub>



For heavy quark fragmentation, we are using Peterson fragmentation :

$$f(z) \propto \frac{1}{[z[1-\frac{1}{z}-\frac{\epsilon_c}{1-z}]^2]}$$
 (6)

for charm quark  $\epsilon_c = 0.04$ . For bottom quark  $\epsilon_c = 0.005$ .

### **Back to Back correlation**



The larger spread of momentum with the Boltzmann implicates a large spread in the angular distributions of the Away side charm



## **Transport theory**

#### ✓ Collision integral

$$C_{22} = \int d^3k \left[ \omega(p+k,k) f_{HQ}(p+k) - \omega(p,k) f_{HQ}(p) \right]$$

$$\omega(p,k) = g \int \frac{d^3 q}{(2\pi)^3} f'(q) v_{rel} \sigma_{p,q \to p-k,q+k}$$

 $\omega(p,k)$  is the transition rate for collisions of HQ with heath bath changing the HQ momentum from p to p-k



### **Transport theory**

Collision integral (stochastic algorithm)

Assuming two particle

- In a volume  $\Delta^3 x$  in space
- momenta in the range (P,P+ $\Delta^3$ P) ; (q,q+ $\Delta^3$ q)

$$\frac{(2\pi)^{3}\Delta N_{coll}}{\Delta t\Delta^{3}x\Delta^{3}p} = g\frac{\Delta^{3}q}{(2\pi^{3})}f_{HQ}(P)f_{g}(q)v_{rel}\sigma_{p,q\to p-k,q+k}$$
collision rate per unit phase space for this pair

$$\frac{(2\pi)^{3}\Delta N_{coll}}{\Delta t\Delta^{3}x\Delta^{3}P} = g \frac{\Delta^{3}q}{(2\pi)^{3}} \frac{(2\pi)^{3}\Delta N_{HQ}}{\Delta^{3}x\Delta^{3}P} \frac{(2\pi)^{3}\Delta N_{g}}{\Delta^{3}x\Delta^{3}q} v_{rel}\sigma_{p,q\to p-k,q+k}$$

$$P_{22} = \frac{\Delta N_{coll}}{\Delta N_{HQ} \Delta N_g} = v_{rel} \sigma_{p,q \to p-k,q+k} \frac{\Delta t}{\Delta^3 x}$$



$$\frac{\Delta t \to 0}{\Delta^3 x \to 0} \longrightarrow \begin{array}{c} \text{Exact} \\ \text{solution} \end{array}$$

## Charm propagation with the langevin eq

We solve Langevin Equation in a box in the identical environment of the B-E Bulk composed only by gluon in Thermal equilibrium at T= 400 MeV.



The long-time solution of the Fokker Planck equation does not reproduces the equilibrium distribution (we are away from thermalization around 35-40 % at intermediate pt ). This is however a well-know issue related to the Fokker Planck

## Charm propagation with the langevin eq

The long time solution is recovered relating the Drag and Diffusion coefficient by mean of the fluctaution dissipation relation  $A(E)ET - D(E) + T(1 - \xi)D'(E) = 0$ 

#### $\checkmark$ Imposing the simple relativistic dissipation-fluctuation relations

#### D=Constant A= D/ET from FDT



### Charm propagation with the langevin eq

✓ Imposing the full relativistic dissipation-fluctuation relations

**D(E)**  $A(E)ET - D(E) + T(1 - \xi)D'(E) = 0$ 



## **Boltzmann vs Langevin (Bottom)**

