

CE ALICE summary of Light Flavor results at intermediate and high p_T

WWND, January 2015

Tuva Richert, Lund University, on behalf of the ALICE collaboration

Outline

- The ALICE detector
- Charged particles without identification
- Identified light flavor particles at high p_T
- The intermediate p_T puzzle

...discussed in terms of

particle ratios

and nuclear modification factors

The ALICE detector

Data taking during Run-1

pp at $\sqrt{s}=0.9$, 2.76, 7, and 8 TeV p-Pb at $\sqrt{s}=5.02$ TeV Pb-Pb at $\sqrt{s}=2.76$ TeV

The ALICE detector

Data taking during Run-1

The ALICE detector

VZERO for trigger and

•

Particle production at intermediate and high p_T – what can ALICE do?

• pp

- Test pQCD
- Fragmentation functions
- Tune MC generators
- Reference for p-Pb and Pb-Pb

• p-Pb

- Initial state nuclear matter effects
- Reference for Pb-Pb
- Collectivity effects?

• Pb-Pb

- Thermal particle production
- Collective expansion
- Parton energy loss
- Modified fragmentation

ALICE high-pT LF

WWND 2015, Tuva Richert, LU

- Measured reference at $\sqrt{s} = 2.76 \text{ TeV}$
- p_T>32 GeV/c: parametrization

- Measured reference at $\sqrt{s} = 2.76 \text{ TeV}$
- p_T>32 GeV/c: parametrization

• Constructed reference at $\sqrt{s} = 5.02 \text{ TeV}$

a) low p_T : interpolation between 2.76 and 7 TeV, assuming power-law

- Measured reference at $\sqrt{s} = 2.76 \text{ TeV}$
- p_T>32 GeV/c: parametrization

• Constructed reference at $\sqrt{s} = 5.02 \text{ TeV}$

a) low p_T : interpolation between 2.76 and 7 TeV, assuming power-law

b) mid-high p_T: 7 TeV scaled with ratio from NLO-pQCD

- Measured reference at $\sqrt{s} = 2.76 \text{ TeV}$
- p_T>32 GeV/c: parametrization

• Constructed reference at $\sqrt{s} = 5.02 \text{ TeV}$

a) low p_T : interpolation between 2.76 and 7 TeV, assuming power-law

b) mid-high p_T: 7 TeV scaled with ratio from NLO-pQCD

c) very high p_T: NLO-scaled reference is parametrized (power-law function)

Pb-Pb – charged particles

Spectra

- Peripheral: similar to pp
 → pQCD and vacuum fragmentation
- Central: depletion
 → suppression at high p_T

Pb-Pb – charged particles

Spectra

- Peripheral: similar to pp
 → pQCD and vacuum fragmentation
- Central: depletion \rightarrow suppression at high p_T

Nuclear modification factor

- Understand medium-induced mechanisms
- Describes relative energy loss
- Disentangle suppression effects

$$R_{AA}(p_T) = \frac{(1/N_{evt}^{AA}) d^2 N_{ch}^{AA} / d\eta dp_T}{\langle N_{coll} \rangle (1/N_{evt}^{pp}) d^2 N_{ch}^{pp} / d\eta dp_T}$$

Pb-Pb – charged particles

Spectra

- Peripheral: similar to pp \rightarrow pQCD and vacuum fragmentation
- Central: depletion \rightarrow suppression at high p_T

R_{AA} at RHIC Au–Au $\sqrt{s_{NN}} = 200 \text{ GeV}$

Suppressed by factor 5

R_{AA} at LHC Pb–Pb $\sqrt{s_{NN}} = 2.76$ TeV:

- Stronger suppression \rightarrow denser medium (dN_{ch}/dη) at LHC \rightarrow larger energy loss
 - (but also q/g ratio and steepness of spectra)
- Suppression decreases at larger p_{T}
- Many models describe this decrease

Nuclear modification factor

- Understand medium-induced mechanisms
- Describes relative energy loss
- Disentangle suppression effects

 $R_{AA}(p_T) =$

Pb-Pb and **p-Pb** – charged particles

Spectra

- Peripheral: similar to pp
 → pQCD and vacuum fragmentation
- Central: depletion
 → suppression at high p_T

 R_{AA} at RHIC Au–Au $\sqrt{s_{\rm NN}}$ = 200 GeV

• Suppressed by factor 5

```
R_{AA} at LHC Pb–Pb \sqrt{s_{NN}} = 2.76 TeV:
```

- Stronger suppression \rightarrow denser medium (dN_{ch}/dη) at LHC
 - → larger energy loss (but also q/g ratio and steepness of spectra)
- Suppression decreases at larger p_T
- Many models describe this decrease

$R_{pA} = 1$ at mid-high p_T

- Small Cronin effect
- Higher p_T: similar to pp (N_{coll} scaling)
 - → Absence of nuclear effects
 - \rightarrow Pb-Pb suppression not an initial-state effect
 - \rightarrow Jet quenching in medium created in Pb-Pb

collisions

Nuclear modification factor

- Understand medium-induced mechanisms
- Describes relative energy loss
- Disentangle suppression effects

$$R_{AA}(p_T) = \frac{(1/N_{evt}^{AA}) d^2 N_{ch}^{AA} / d\eta dp_T}{\langle N_{coll} \rangle (1/N_{evt}^{pp}) d^2 N_{ch}^{pp} / d\eta dp_T}$$

Pb-Pb and **p-Pb** – charged particles

Spectra

- Peripheral: similar to pp \rightarrow pQCD and vacuum fragmentation
- Central: depletion \rightarrow suppression at high p_T

 R_{AA} at RHIC Au–Au $\sqrt{s_{NN}} = 200 \text{ GeV}$

Suppressed by factor 5

 R_{AA} at LHC Pb–Pb $\sqrt{s_{NN}} = 2.76$ TeV:

- Stronger suppression \rightarrow denser medium (dN_{ch}/dη) at LHC
 - \rightarrow larger energy loss (but also q/g ratio and steepness of spectra)
- Suppression decreases at larger p_T
- Many models describe this decrease
 - $R_{pA} = 1$ at mid-high p_T
- Small Cronin effect
- Higher p_T: similar to pp (N_{coll} scaling)
 - \rightarrow Absence of nuclear effects
 - \rightarrow Pb-Pb suppression not an initial-state effect
 - \rightarrow Jet quenching in medium created in Pb-Pb
- collisions

ALICE high-pT LF

Comparison to ATLAS and CMS

- Extended p_T to 50 GeV/c (ALICE)
- ATLAS and CMS see a rise at very high p_{T}
 - \rightarrow not seen in **ALICE**
- The difference is larger in the reference spectra

HIGH p_T

Pb-Pb – identified – high p_T ratios

All ratios consistent with pp for $p_T > 8 \text{ GeV/c}$

 \rightarrow hard processes dominated by fragmentation

 \rightarrow fragmentation is vacuum-like

 \rightarrow not modified by medium

Pb-Pb – identified – high $p_T R_{AA}$

All hadrons equally suppressed

 \rightarrow no mass ordering (at high p_T)

 \rightarrow large energy loss due to medium

WWND 2015, Tuva Richert, LU

p-Pb – identified – high $p_T R_{pA}$

No suppression in p-Pb high p_T

 \rightarrow no initial state effects in Pb-Pb suppression

INTERMEDIATE p_T

Pb-Pb – identified: Λ and K_s^0 – ratios

- Intermediate p_T : enhancement of Λ to K_s^0 \rightarrow baryon/meson enhancement
- Decreases with decreasing centrality
- Shift of maximum position to lower $\boldsymbol{p}_{\mathrm{T}}$

- Models with modified fragmentation and hadronization due to medium describe data quantitatively well
- EPOS: takes into account interaction between jets and the hydrodynamically expanding medium
- Fries et al.: recombination model reproduces shape, but overestimates enhancement

Pb-Pb – identified: π, K, p – ratios

- p/π (baryon/meson) and K/π (meson/meson!) ratios: peak at p_T ≈ 3 GeV/c in central Pb–Pb
 → number of constituent quarks does not determine the spectral shape?
- EPOS: recombination only occurs for soft thermal radially flowing partons (soft coalescence)
 → more consistent with data, but overestimates the peaks

Pb-Pb – identified: ϕ – ratios

- So far: baryon/meson enhancement in p/π and A/K_s^0 in central Pb–Pb, intermediate $p_T \rightarrow$ coalescence of quarks?
- Baryon/meson of similar mass: p/\$
 - \rightarrow no difference in p_T distribution \rightarrow no enhancement!
 - $\rightarrow \phi$ spectrum similar to proton spectrum
 - \rightarrow hadron mass seems to be the driving parameter (hydro flow)

p-Pb and **Pb-Pb** – identified – ratios

• No significant multiplicity dependence in p-Pb K/ π at mid- to high-p_T

p-Pb and **Pb-Pb** – identified – ratios

+ K_)/(π

1 - ALICE, √s_{NN} = 5.02 TeV

p-Pb, 0-5% p-Pb, 60-80%

V0A Multiplicity Classes (Pb-side)

- No significant multiplicity dependence in p-Pb K/ π at mid- to high-p_T
- Λ/K_{s}^{0} and p/π enhancement at intermediate p_{T}
- Baryon to meson ratio increases with multiplicity
- Qualitatively similar (magnitude differs) to Pb-Pb (explained by flow-like effects)

Interplay between soft and hard physics

- Origin of enhancement?
- Different hadronization mechanisms:
 a) parton fragmentation (jet hard)
 b) collective effects (bulk soft)
- Separating hadrons produced in bulk (underlying events)
 from these associated with a high p_partic

from those associated with a high- p_T particle (jet)

- **Pb-Pb**: p/π in bulk and jet by correlation method
 - → baryon-meson enhancement is a bulk effect
- **p-Pb**: Λ/K⁰_s (jet reconstruction method) same conclusion

π, **K**, p

- p less suppressed than K and π
 → consistent with particle ratios
- Mass ordering at intermediate $\boldsymbol{p}_{\mathrm{T}}$

π, **K**, p

- p less suppressed than K and π
 → consistent with particle ratios
- Mass ordering at intermediate p_T

K*

• More supression of K^* than of charged hadrons for low p_T (consistent with re-scattering)

π, **K**, p

- p less suppressed than K and π
 → consistent with particle ratios
- Mass ordering at intermediate \boldsymbol{p}_{T}

K*

• More supression of K^* than of charged hadrons for low p_T (consistent with re-scattering)

φ: a meson with the mass of a proton

- RHIC: differences between the p and φ
 → favor of recombination
- LHC: differences between \mathbf{p} and $\boldsymbol{\phi}$

π, **K**, p

- **p** less suppressed than **K** and π \rightarrow consistent with particle ratios
- Mass ordering at intermediate p_T

K*

• More supression of K^* than of charged hadrons for low p_T (consistent with re-scattering)

φ: a meson with the mass of a proton

- RHIC: differences between the p and φ
 → favor of recombination
- LHC: differences between **p** and **φ** but remember: NOT differences in p_T distribution
 - \rightarrow differences in pp reference spectra

π, Κ, ρ

- p less suppressed than K and π
 → consistent with particle ratios
- Mass ordering at intermediate p_T

K*

• More supression of \mathbf{K}^* than of charged hadrons for low p_T (consistent with re-scattering)

\$\$ a meson with the mass of a proton

- RHIC: differences between the p and φ
 → favor of recombination
- LHC: differences between **p** and **φ** but remember: NOT differences in p_T distribution → differences in pp reference spectra

Ξ and Ω

- Ω = very heavy baryon, enhanced over Ξ
 → mass effect (flow push)?
 - → strangeness enhancement/canonical suppression

WWND 2015, Tuva Richert, LU

- Enhancement for **E** and **p**
- Increase of peak with multiplicity faster for heavier than lighter \rightarrow mass ordering $\pi \rightarrow K \rightarrow p \rightarrow \Xi$
- Mass ordering similar in Pb-Pb and p-Pb
 → flow in p-Pb?

- Enhancement for **E** and **p**
- Increase of peak with multiplicity faster for heavier than lighter \rightarrow mass ordering $\pi \rightarrow K \rightarrow p \rightarrow \Xi$
- Mass ordering similar in Pb-Pb and p-Pb → flow in p-Pb?

Summary

High p_T

- Same suppression is seen for all light quark systems created in Pb-Pb
 - \rightarrow the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets
- No suppression in p-Pb seen
 - \rightarrow Pb-Pb suppression is a final-state hot-matter effect

Intermediate p_T: particle ratios

- Pb-Pb: K/π (mass dependent) enhancement
- Pb-Pb: φ has same spectra shape as p
 → supports hydrodynamic picture in central Pb-Pb collisions
- p-Pb: similar features as in Pb-Pb
 → collectivity in p-Pb?

Interplay between soft and hard physics

- New methods developed for this purpose, e.g. jet=peak-bulk
- Baryon/meson enhancement seems to be a bulk effect in both Pb-Pb and p-Pb, and unmodified in jet-like structures

Conclusions

• Many unresolved pieces in the puzzle; for Run-2 we need new concrete theoretical ideas or to ask the question in a new way that allows us to look for much smaller effects than we expected before Run-1

Intermediate p_T: nuclear modification

- Pb-Pb: π, K, p mass ordering
- Pb-Pb: Ω enhanced compared to Ξ
 → Mass effect? Strangeness enhancement?
- p-Pb: mass ordering as in Pb-Pb But φ breaks mass ordering picture

THANK YOU!

ALICE high-pT LF

BACK UP

ALICE high-pT LF

WWND 2015, Tuva Richert, LU

pp – all charged particles

- Relative increase of cross section with \sqrt{s} agrees with NLO-pQCD
- Hard parton-parton scattering qualitatively described by NLO-pQCD
 → constraining parton distribution and fragmentation functions
- Reference at $\sqrt{s} = 2.76$ TeV: pT>32 GeV/c: parametrization
- Reference at √s = 5.02 TeV:
 a) low pt: interpolation assuming power-law

b) mid-high pt: scaled with ratio from NLO-pQCD

c) very high pt: NLO-scaled reference is parametrized (power-

law function)

ALICE high-pT LF

WWND 2015, Tuva Richert, LU

Pb-Pb – identified

• Additional info by PID

a) Differences of fragmentation and energy loss between quarks and gluons to baryons and mesons

b) Differences in their interaction with the medium

- Relativistic rise: particle species not well separated
 - \rightarrow statistical PID needed
- dE/dx obtained as truncated mean of the 0-60% lowest charge samples associated with the track in the TPC
- Pion, kaon, and proton yields extracted by fitting a sum of four Gaussian
- Secondary pions and protons obtained from ${K^0}_s$ and Λ decays
 - \rightarrow fix peak positions and widths
 - \rightarrow 12 \rightarrow 4 degrees of freedom

- dE/dx distributions measured for $|\eta| < 0.2$ and normalized to the integrated yields
- Signals fitted to a sum of four Gaussian functions (solid line)
- Two p intervals are shown for central (left) and peripheral (center) Pb-Pb; and pp (right) collisions
- Individual yields are shown as dashed curves

ALICE high-pT LF

WWND 2015, Tuva Richert, LU

ALICE high-pT LF

WWND 2015, Tuva Richert, LU

42

In the intermediate p_T region: 2-7 GeV/c, the ratio exhibits an evolution from the most central to the most peripheral Pb-Pb collisions.

Intermediate $p_{_{\rm T}}$: 2-7 GeV/c, enhancement of the baryon to meson ratio.

ALICE high-pT LF

WWND 2015, Tuva Richert, LU

ALI-PREL-80555

ALICE high-pT LF

WWND 2015, Tuva Richert, LU