

Search for the Standard Model Higgs Boson Produced in Vector Boson Fusion and Decaying to Bottom Quarks

Gurpreet Singh*, Burin Asavapibhop, Narumon Suwonjandee
Chulalongkorn University, Thailand

Siam Physics Congress - 2015 May 20, 2015

Prologue

- Compact Muon Solenoid (CMS) Experiment
- Standard Model Higgs Boson Production at Large Hadron Collider (LHC)
- Vector Boson Fusion Hbb search in a Nutshell
- Event Selection Strategy
- Pre-selection
- Multivariate Analysis
- Results
- Summary

The CMS Detector

Standard Model Higgs Boson Production at LHC

Gluon – gluon fusion

Vector – boson fusion (VBF)

Associated production with Vector bosons

Associated production with top quark

VBF Hbb in a Nutshell

Overview

- Important to establish the nature of Higgs boson
- Anomaly in the Higgs boson coupling hint for New Physics.
- At m_H=125, H→bb has ~60% branching fraction
 - QCD background pp \rightarrow bb for **ggF** is $> 10^7$ times larger.
- Improve the sensitivity of H→bb searches (VBF, VH, ttH)
- Experimental challenges are trigger selection, overwhelming QCD background
- Significantly large cross section

Proton-proton collision data = 19 fb⁻¹ Center-of-mass energy (\sqrt{s}) = 8 TeV

Signal Topology

- 4 energetic hadronic jets
- Two quark-jets with high mass (m_{qq}) in forward/backward direction; large pseudo-rapidity (η) difference; low hadronic activity between them
- Two b-jets in central region of detector
- No QCD color exchange between b-jets and VBF jets
- ggF → H with associated 2 QCD jets considered as signal

Backgrounds

QCD multijet production
Z+jets
ttbar
single-top
W+jets

Event Selection Strategy - I

Search Strategy

- Topological trigger on the signal main properties
- Multivariate methods to exploit significant differences between signal and QCD
- Perform a search for a resonance structure ("bump hunt") on the m_{bb} spectrum

Event Interpretation

- At least one good primary vertex and 4 reconstructed PF jets
- Order jets according to:
 - Transverse momentum (p_T)
 - 4 leading jets in p_T define the searched signal final state
 - By Combined Secondary Vertex (CSV) BTag value
 - b quarks jets [highest CSV]; qq jets [lowest CSV]
 - By η value
 - b quarks jets in central region; qq jets in forward backward region

pre-selection

- $p_{T,1} > 85 \text{ GeV}$
- $p_{T,2} > 70 \text{ GeV}$
- $p_{T,3} > 60 \text{ GeV}$
- $p_{T,4} > 40 \text{ GeV}$
- $m_{q\bar{q}} > 300 \text{ GeV}$
- \bullet $\Delta\eta_{
 m qar q}>2.5$
- ullet $\Delta\phi_{
 m bar b} < 2.0$

Event Selection Strategy - II

- CSV b-tagger: Get 2 most b-tagged jets
 - Identification of jets that likely originate from the hadronization of b-quarks
 - To reject fake jets from detector noise,
 - Jets heavily contaminated with pileup energy
- Quark-Gluon Jet discriminator: Scrutinize 2 least b-tagged jets
 - The non b-jets in signal originate from quarks while in QCD they originate mainly from gluons
 - Exploits the differences in the showering and fragmentation of gluons and quarks
- Additional hadronic activity
 - Quantify the hadronic activity not contained in jets
 - Absence of color flow between the VBF qq jets and the b-jets in the signal
 - Effective against QCD background

Event Selection Strategy - III

- A jet-by-jet correction factor (CF) is derived by combining various jet properties in a multivariate regression analysis
- CF is used to define a corrected m_{bb} mass of the two most b-tagged jets
 - To improve the resolution of the b-jets invariant mass spectrum

Pre-selection Results

Multivariate Analysis

- Artificial Neural Network (ANN) implemented in TMVA
- Preselected events are further characterized by the response of ANN
 - Trained to separate signal events from background ones
- Two most b-tagged jets: CSV b-tagging values are used
- Two less b-tagged jets: Output of a quark-gluon jet discriminator applied

Cat. 0	Cat. 1	Cat. 2	Cat. 3	Cat. 4	
ANN < 0.52	$0.52 \le ANN < 0.76$	$0.76 \le ANN < 0.90$	$0.90 \le ANN < 0.96$	$ANN \ge 0.96$	

Invariant Mass Distribution of bb

- Final M_{bb} distribution is analyzed in each ANN category separately
- M_{bb} spectrum is fitted with a background template with three parts:
 - QCD background Normalization and shape of Bernstein polynomial
 - Z+jets/W+jets
 - top (tt +single-top)
- Normalization and shape from Monte Carlo
- Fits of the Z \rightarrow bb peak performed, for each category, in M_{bb} distribution by using the same techniques employed to search for the VBF Higgs boson signal.
 - To validate the methodology used to search Higgs boson bb signal.
 - $Z \rightarrow$ bb signal strength (μ) = 0.99 ± 0.12

Results

VBF + VH

VBF

Conclusions

- Search for the standard model Higgs boson produced in vector boson fusion and decaying to bottom quarks is presented
 - pp collisions data corresponds to $\sqrt{s} = 8$ TeV and integrated luminosity of 19 fb⁻¹
- At a Higgs boson mass of 125 GeV
 - Expected upper limit is 3.0 times the standard model prediction
 - Observed limit is 3.6 times the standard model prediction
 - Excess corresponds to a signal strength (μ) = 0.7 \pm 1.4
- To improve the sensitivity of H → bb search, VBF channel combined with VH
 - An excess of 2.2 standard deviations is reported at $m_H = 125 \text{ GeV}$
 - Signal strength (μ) = 0.97 \pm 0.48

Thank You

Back Up

Event Display

ANN Category

Miscellaneous

Systematic Uncertainties

Uncertainty		
depending on the statistics of each category		
±20%		
$\pm 20\%$		
$\pm 1.5\%$		
$\pm 10\%$		
$\pm 4.4\%$		
$\pm 5-8\%$		
$\pm 10\%$		
±2%		
±3%		
±10%		
±5%		
±2%		
± 2 %		
-8 - +2%		
$\pm 15\%$		
±50%		
±50%		

GF/VBF Fraction CMS Simulation $\sqrt{s} = 8 \text{ TeV}$ 4 0.06 3 2 0.26 0.23 0.22 0.2 0.18 0.6 0.51 0.47 0.43 0.39 115 120 125 130 135 Higgs Mass (GeV)

MVA Inputs

- 1. $\Delta \eta_{qq}$ the pseudorapidity separation between the b-tag sorted qq jets.
- 2. $\delta \Delta \eta_{qq}$ the pseudorapidity separation difference between the b-tag sorted and the η sorted qq jets. This difference is expected to be mostly zero for preselected signal events where the non-b-tagged (VBF) jet pair is often the most forward-backward.
- 3. m_{qq} the invariant mass of the b-tag sorted qq jet pair.
- 4. η_{qq}^{boost} the average pseudorapidity of the b-tag sorted qq jet pair system.
- 5. **CSV**₀ the CSV b-tagging output for the most b-tagged jet.
- 6. CSV_1 the CSV b-tagging output for the second most b-tagged jet.
- 7. QGL₂ the quark/gluon likelihood discriminator output for the third b-tagged jet.
- 8. QGL₃ the quark/gluon likelihood discriminator output for the least b-tagged jet.
- 9. η_2 the pseudorapidity of the third b-tagged jet.
- 10. H_T^{soft} the scalar p_T sum of the additional "soft" Track-Jets with $p_T > 1$ GeV.
- 11. $\cos \theta$ the cosine of the polar angle of the vector $\vec{p}_{q_1} \times \vec{p}_{q_2}$ in the Higgs boson rest frame (the frame where the momenta of the two most b-tagged jets are back-to-back), where q_1 and q_2 are the least b-tagged jet pair. The angle θ is essentially the angle between the qq and bb planes.
- 12. $\cos \alpha$ the polar angle of the vector $\vec{p}_{q_1} + \vec{p}_{q_2}$ in the Higgs boson rest frame.

< 0.52	0.52 - 0.76	0.76 - 0.90	0.90 - 0.96	> 0.96
1.9e+6	3.2e+5	1.1e+5	2.7e+4	8.7e+3
5531	1222	531	124	54
12730	1032	190	33	15
1839	383	128	25	10
895	226	73	15	7
2033	226	50	4	<1
66	79	84	49	33
94	37	18	6	2
	1.9e+6 5531 12730 1839 895 2033 66	1.9e+6 3.2e+5 5531 1222 12730 1032 1839 383 895 226 2033 226 66 79	1.9e+6 3.2e+5 1.1e+5 5531 1222 531 12730 1032 190 1839 383 128 895 226 73 2033 226 50 66 79 84	1.9e+6 3.2e+5 1.1e+5 2.7e+4 5531 1222 531 124 12730 1032 190 33 1839 383 128 25 895 226 73 15 2033 226 50 4 66 79 84 49

Results

Transverse Slice through CMS

- 85 % 90 % efficiency for collecting LHC delivered data
- High efficiency and resolution in object (e, μ, tau etc.) reconstruction
- The CMS detector provides good tracking and particle ID all around the interaction point (0 < ϕ < 2π , | η | < 3)

