Unitarity and the Higgs bosons

Patipan Uttayarat

SPC 2015 Krabi, Thailand

May 20, 2015

The Higgs era

Physicists Find Elusive Particle Seen as Key to Universe

Pool photo by Denis Balibouse

Scientists in Geneva on Wednesday applauded the discovery of a subatomic particle that looks like the Higgs boson.

By DENNIS OVERBYE

Published: July 4, 2012 ☐ 122 Comments

SM Higgs-like boson

Is it possible to have additional Higgs-like particles?

Higgs-like particle

• Working definition:

- It's a scalar particle.
- It can have a different mass from the observed 126 GeV one.
- It couples to a pair of electroweak vector bosons (and fermions).
- ▶ It can be neutral or charged.

Higgs-like particle

- Working definition:
 - It's a scalar particle.
 - It can have a different mass from the observed 126 GeV one.
 - It couples to a pair of electroweak vector bosons (and fermions).
 - It can be neutral or charged.
- If such a particle exists, what are the constraints on its properties?
 - Unitarity provides model-independent constraints on possible Higgs-like particle.
 - Unitarity: the probability cannot be greater than 1

Constraint from Unitarity: Higgs Sum Rules

WW scattering

- For a massive vector, the longitudinal polarization mode grows with energy.
 - Each amplitude grows as s^2 .
 - ▶ The sum of the three amplitudes $\sim s$.

WW scattering

- For a massive vector, the longitudinal polarization mode grows with energy.
 - Each amplitude grows as s^2 .
 - ▶ The sum of the three amplitudes $\sim s$.
 - ▶ Leads to a violation of unitarity at high energy!

Restoring unitarity

- Parametrized couplings:
 - Neutral Higgses: a
 - Doubly charged Higgses: b

Restoring unitarity

- Parametrized couplings:
 - Neutral Higgses: a
 - Doubly charged Higgses: b
- Unitarity requires

$$\sum_{i} a_{i}^{2} - 4 \sum_{r} b_{r}^{2} = 1.$$

(Non-trivial) Sum rules

More sum rules

- ▶ $WW \rightarrow ZZ$ gives sum rule involving a singly charged Higgses coupling to W and Z, f_i .
- $WW \to t \overline{t}$ gives sum rule involving the Yukawa coupling, c_{t_i} .

$$(W^{+}W^{-} o W^{+}W^{-}) \sum_{i} a_{i}^{2} - 4 \sum_{r} b_{r}^{2} = 1$$
 $(W^{+}W^{-} o ZZ) \sum_{i} a_{i}^{2} - \cos^{2}\theta_{w} \sum_{r} f_{r}^{2} = 1$
 $(W^{+}W^{-} o f\bar{f}) \sum_{i} a_{i}c_{t_{i}} = 1$

Implication of the sum rules, I

• From the $WW \rightarrow WW$ and $ZZ \rightarrow WW$,

$$\sum b_i^2 \sim \sum f_r^2$$

- ▶ If there is no doubly charged Higgs, there will no singly charged Higgs coupling to WZ.
- Ex: Multi-Higgs-doublet models.

Implication of the sum rules, II

• From the $WW \rightarrow t\bar{t}$,

$$\sum a_i c_{t_i} = 1$$

- If it is saturated by a single Higgs with SM-like coupling, then either:
 - Other Higgs couplings must vanishe.
 - ► There are canceling contribution (requires at least two more Higgs particle)

Getting more out of unitarity contraints

- The s-independent part of the amplitude cannot be arbitrary large.
- Unitarity of partial wave amplitude implies bounds on Higgs masses

$$\sum_{i} (a_{i} M_{i}^{0})^{2} + 2 \sum_{r} (b_{r} M_{r}^{++})^{2} \leq \frac{2\pi\sqrt{2}}{G_{F}}$$
$$\sum_{i} a_{i} d_{i} (M_{i}^{0})^{2} + 2 \sum_{r} f_{r}^{2} (M_{r}^{+})^{2} \leq \frac{4\pi\sqrt{2}}{\cos^{2}\theta_{W} G_{F}}$$

Backup Slides

Example: The Doublet-Septet model

- In this model, we augment the SM with an electroweak septet with hyper-charge 2.
- It automatically preserves $\rho = 1$.
- Spectrum: 1 doubly charged Higgs, 2 singly charged Higgess, 2 CP-even neutral Higgses (and 1 CP-odd neutral Higgs.)
- The parameters a_i , b_i and f_i are given in terms of the mixing angles α , β and γ .
 - α : mixing angle of the two physical neutral Higges.
 - β : the mixing of the two vevs.
 - γ : mixing of the two physical singly charged Higges.

Bounds from WW

$$h' = s_{\alpha}\phi_2^0 + c_{\alpha}\phi_7^0$$
, tan $\beta = v_2/(4v_7)$

Bounds from ZZ

$$h' = s_{\alpha}\phi_{2}^{0} + c_{\alpha}\phi_{7}^{0}$$
, $\tan \beta = v_{2}/(4v_{7})$

