Correlation Factors of Wire Sweep between Wire Bond and Mold to Establish Process Design Rule

UTAC Thai Limited

Anocha Sanorit^{1*}, Kessararat Ugsornrat¹, Chalermsak Sumithpibul²

¹Department of Industrial Physics and Medical Instrumentation, King Mungkut's University of Technology North Bangkok, Bangkok 10800, Thailand ²Department of Engineering, Utac Thai Limited, Bangkok, 10210

*anocha.amp@hotmail.com

Abstract

The effects of wire sweep within the integrated circuit (IC) packaging process were studied in this research. Wire sweep is a major criteria that causes the shortage of wire between adjacent areas such as die and mold compound. It occur from the molding process after the wire bonding process in IC assembly. In experiment, the parameters of wire sweep were varied by wire size from 0.7 to 1.0 mil, wire height were varied from 3.0 to 5.0 mil, and in board bond wire length were varied from 10%, 30%, and 50% respectively. The results revealed that the wire height and the inboard wire length were showed directly proportional to wire sweep. In the opposite way, the wire size was showed inversely proportional to wire sweep. Therefore, these parameters of wire were played the important rule in IC packaging process. It should be selected properly for reducing the lot reject rate.

wire size $= 0.8$											
	leg	Н	%inbo		% wire	e sweep	Gap				
	icg		nod	bond L		average	min	average			
	1	3		8.82	4.99	2.7	1.71	2.04			
	2	4	10%	8.83	7.31	4.18	1.49	2.22			
	3	5		8.8	10.38	6.4	1.32	2.86			
	4	3		25.91	10.56	6.51	0.75	0.93			
	5	4	30%	25.92	6.25	4.3	1.24	1.98			
	6	5		25.94	8.97	7.46	0.62	1.23			
	7	4		43.51	8.08	5.88	0.8	1.76			
	8	5	50%	43.46	8.33	7.42	1.27	1.68			
	9	6		43.42	9.88	8.13	1.92	1.41			
	Table. 2 The experimental Result in QFN package5X5 wire size 0.8										
wire size $= 1.0$											
	leg H %inboard			rd L	% wire sweep		Gap				
			bond		max	average	min	average			
	1	3		8.62	2.53	1.42	2.22	2.49			
	2	4	10%	8.77	2.74	1.1	1.92	2.22			
	0	_		0.07	07	1 00	0.40	0.00			

8.67

43.81

24.11 5.41

24.12 4.68

24.16 4.34

43.81 5.16

43.83 9.01

7.04

 Table. 3 The experimental Result in QFN

package5X5 wire size 1.0

3

6

9

5

5

6

Wire diameter

1.4

1.2

50%

3.7

1.38

2.52

2.53

2.7

3.92

5.22

6.25

3.48

0.79

1.73

1.29

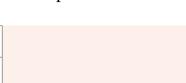
0.69

0.54

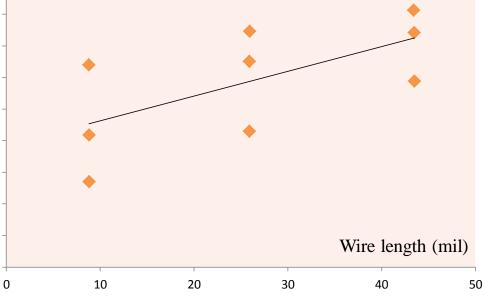
0.37

3.92

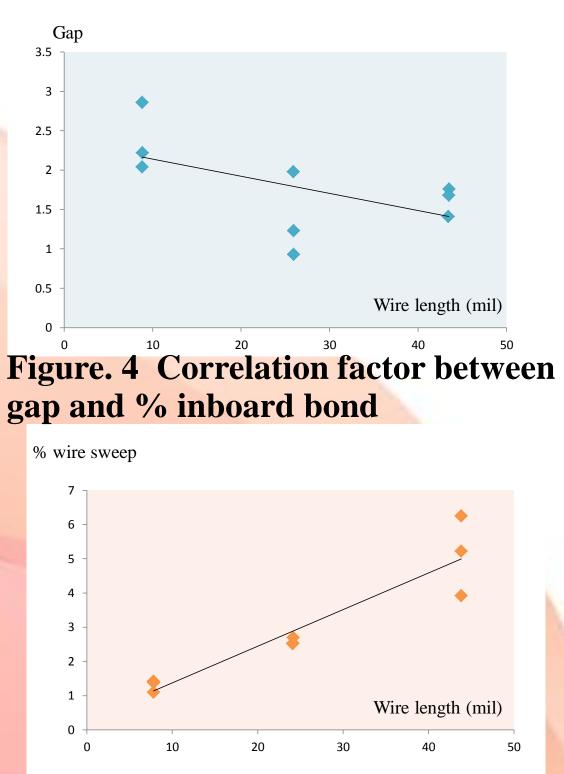
1.99

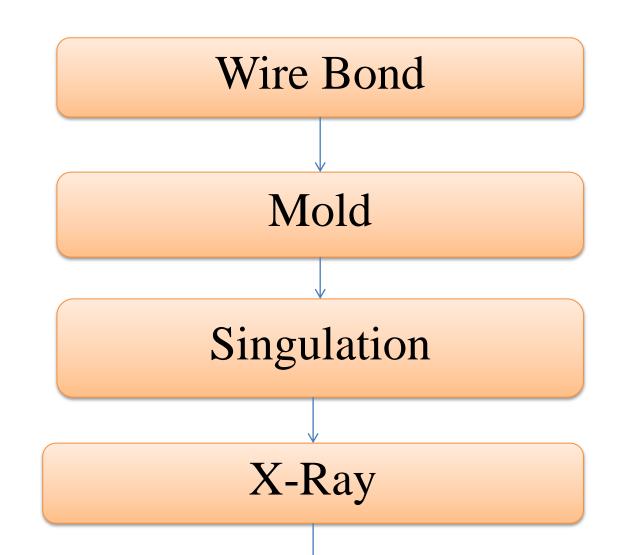

2.16

1.81


1.71

1.43


1.6


% wire sweep

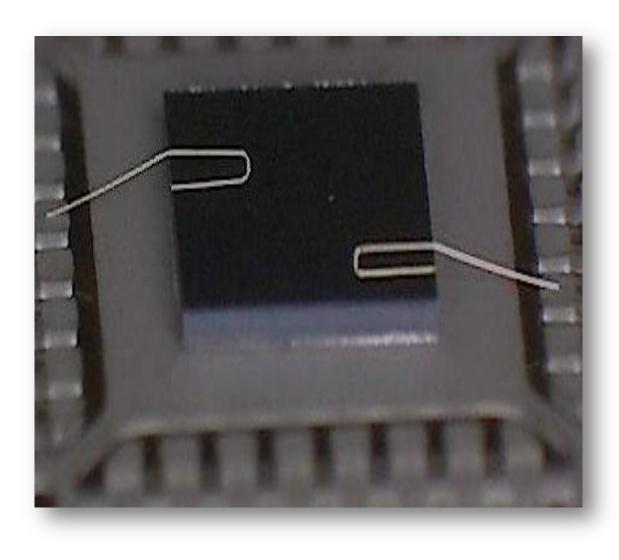
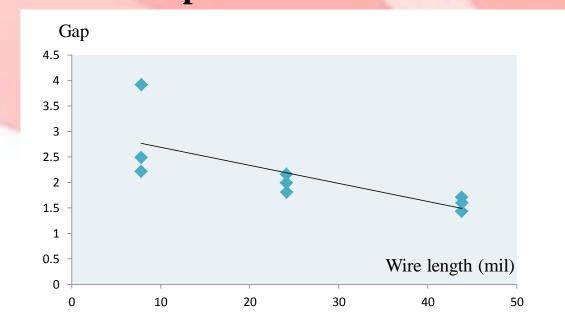


Figure. 3 Correlation factor between %wire sweep and % inboard bond



Methodology

Figure. 5 Correlation factor between %wire sweep and % inboard bond

Figure. 6 Correlation factor between gap and % inboard bond

Decapsulation

Analysis Examination

Figure. 1 Schematic representation of the experimental method

Experimental Result

ľ	wire s	size =	0.7						
	leg	Η			% wire sweep		Gap		
7			%inboar bond	d Ľ	max	average	min	average	
2	1	3		8.88	7.9	4.4	0.3	1.36	
-	2	4	10%	8.9	9.45	5.69	0.58	1.28	N Z
_	3	5		8.91	13.99	10.02	1.73	2.73	
	4	3		24.22	7.2	5.37	0.22	0.83	Kin .
	5	4	30%	24.2	8.48	6.59	X	X	H = Loop High
~	6	5		24.22	8.95	7.68	X	X	L = wire length
	7	4	50%	43.41	7.32	6.48	X	X	Gap = gap between wire and
	8	5		43.41	9.99	7.96	Х	X	die edge after mold
	9	6		43.4	9.48	8.53	X	X	X = found wire touching die surface or die edge

Figure. 2 Loop profile Au wire bonding

- Wire bond QFN package 5x5, Au wire
- x-ray to measure percent wire sweep chemical decapsulation to measure the gap between wire and die edge after mold process.
- wire size 0.8 0.8 wire size 1 0.6 0.4 0.2 0

At the middle of At the beginning At the end of of mold flow mold flow mold flow Figure. 7 The difference value of gap before and after mold

Conclusion

- wire length varies according to the percent wire sweep but inversely proportional to the value of the gap between wire and die edge after mold.
- The bigger size of the wire can resist the wire sweep the wire better.
- The difference value of gap before mold and after mold at the end of mold flow is higher than at the middle of mold flow and the beginning of mold flow respectively.

References

1. Huang-Kuang Kung, Jen-Chou Hsiung, and Jeng-Nan Lee, IEEE Transaction on component, package and manufacturing technology. (2013) VOL.3, NO.1 2. Huang-Kuang Kung, Yun-Ping Sun, Jeng-Nan Lee, Hung-Shyong Chen, Microelectronic Engineering.(2008),1902–1909 3. Serene Teh Seoh Hian, Freescale Malaysia Sdn. Bhd.

Acknowledgment

Table.1 The experimental Result in QFN package5X5

This work is supported by UTAC Thai Limited