Higgs Measurements and SUSY Global Fits

Philip Bechtle with input from the HiggsSignals and Fittino teams

December 16th 2014

- Introduction
- Using the Higgs Mass and Rates in Phenomenological Analyses
 - Introduction
 - Validation
 - An Example Application of HiggsSignals
 - Projections
- SUSY Global Fits with Fittino
 - Introduction, Codes and Observables
 - Properties of the Fit
 - Results

- Introduction
- Using the Higgs Mass and Rates in Phenomenological Analyses
 - Introduction
 - Validation
 - An Example Application of HiggsSignals
 - Projections
- SUSY Global Fits with Fittino
 - Introduction, Codes and Observables
 - Properties of the Fit
 - Results

healthy?

healthy?

pretty dull?

healthy?

pretty dull?

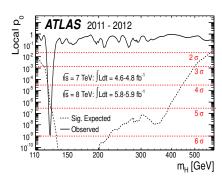
almost dead?

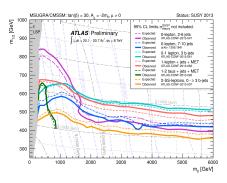
healthy?

pretty dull?


almost dead?

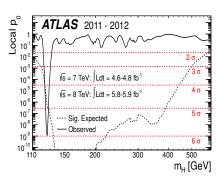
buried?

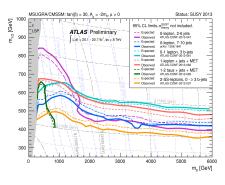

So near... and yet so far...



We found a SM-like Higgs...

So near... and yet so far...




We found a SM-like Higgs...

But we did not find anything else.

So near... and yet so far...

We found a SM-like Higgs...

But we did not find anything else.

Two questions arise:

- How can we learn from the Higgs discovery for any model of physics beyond the SM?
- What can we learn from everything we know about SUSY?

- Introduction
- Using the Higgs Mass and Rates in Phenomenological Analyses
 - Introduction
 - Validation
 - An Example Application of HiggsSignals
 - Projections
- 3 SUSY Global Fits with Fittino
 - Introduction, Codes and Observables
 - Properties of the Fit
 - Results

HiggsSignals main Ideas

HiggsSignals (PB,S. Heinemeyer,O. Stal,T. Stefaniak,G. Weiglein, arXiv:1305.1933, arxiv:1403:1582)

- Evaluates a χ^2 using a gaussian approximation of the μ measurements in all subchannels (can be asymmetric gaussians, often already quite good approximation)
- Model-independent input
- (Originates from before the collaborations published 'almost' likelihoods)
- One of the main distinctive features: Can handle any number of Higgs bosons, and as long as user is prepared to re-evaluate channel efficiencies: Can handle arbitrary Higgs sectors
- Works well as long as statistics in each subchannel is low, such that experimental correlations between subchannels are not yet too dominant

HiggsSignals Inputs

User Input (From Theory):Take model-predictions of

• Take model-predictions of a given (arbitrary) Higgs sector for

$$m_k$$
, Γ_k^{tot} , $\sigma_i(pp \to H_k)$, $BR(H_k \to XX)$,

with k = 1, ..., N, $i \in \{ggH, VBF, WH, ZH, t\bar{t}H\}$ for N neutral Higgs bosons as the program's user input.

 Optional input: Theo. uncertainties for mass, cross sections and BR's This is important for all New Physics models

Experimental Input:

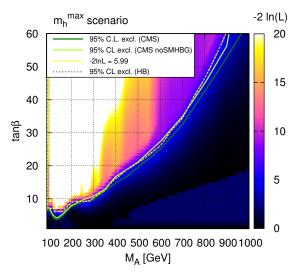
- m_h measurements
- Signal strength measurements:

$$\mu_{H\to XX_j} = \frac{\sum_i \epsilon_{\mathrm{model}}^{ij} \ [\sigma_i(pp\to H) \times \mathrm{BR}(H\to XX)]_{\mathrm{model}}}{\sum_i \epsilon_{\mathrm{SM}}^{ij} \ [\sigma_i(pp\to H) \times \mathrm{BR}(H\to XX)]_{\mathrm{SM}}},$$

with $i \in \{ggH, VBF, WH, ZH, t\bar{t}H\}$ and efficiencies ϵ_i .

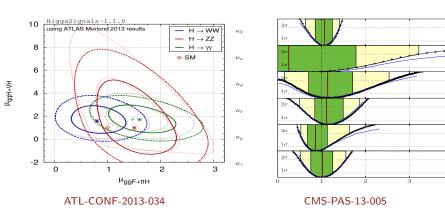
- Efficiencies of each production mode *i* in each subchannel *j*
- ullet 1D μ measurements allow for easier deconvolution of theory uncertainties than 2D
- But it is much more difficult to account for experimental systematics in between subchannels

HiggsBounds Let's not forget the Limits


HiggsBounds

(PB,S. Heinemeyer,O. Brein,O. Stal,T. Stefaniak,G. Weiglein,K. Wiliams arXiv:0811.4169,arXiv:1102.1898,arXiv:1311.0055)

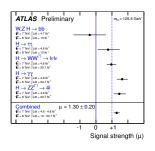
- Limits continue to be of great relevance! Let's not forget that we do not know for sure that there is only one Higgs!
- We are talking about likelihoods for measurements! Why not finally publish likelihoods for exclusions?
- ullet Also: SM Higgs search combinations in the full mass range remain important. As far as we know, the last of such combinations was published at HCP 2012 by CMS, using the 4.8fb-1 / 12.2fb-1 of 7/8 TeV data.
- Equally important as for the signal rate measurements is the publication of signal efficiencies for the limits (if necessary, mass-dependent).
- ullet CMS made a nice approach to publish likelihood information for a single resonance toy model in the non-standard H o au au search. Extremely useful e.g. in global BSM fits

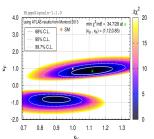


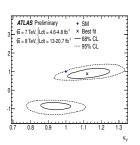
HiggsBounds Let's not forget the Limits

CMS $H o au^+ au^-$ works extremely well! Yellow should reproduce green

Validation against ATLAS and CMS (Moriond 2013)

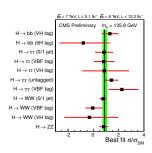

Generally good agreement Main limiting factors / challenges:

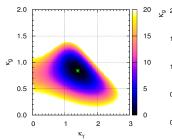

- Missing public information on signal efficiencies,
- Missing public information on correlations of exp. systematics,
- ullet some measurements are performed at different m_H values than validation.

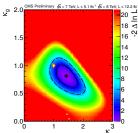


Test using ATLAS and κ_F, κ_V

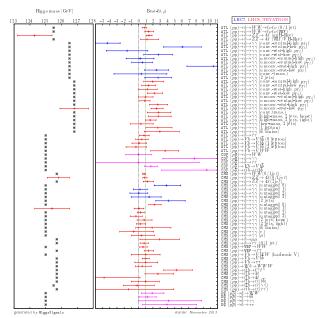
- Test simple 2D effective coupling benchmark models, proposed in LHC Higgs Cross Section Working Group, Sep.12, [1209.0040]
- ullet Scale fermion couplings by κ_F and vector boson couplings by κ_V
- ullet non-trivial scaling of loop-induced $H\gamma\gamma$ coupling.
- loop-induced Hgg coupling scales with κ_F (effectively a fermion loop).
- No special treatment of negative μ_i

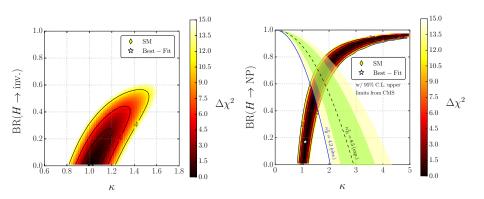






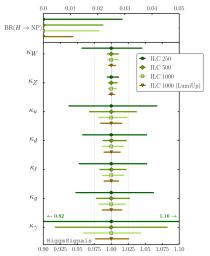
Test using CMS and κ_g, κ_γ

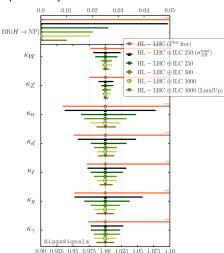

- Test simple 2D effective coupling benchmark models, proposed in LHC Higgs Cross Section Working Group, Sep.12, [1209.0040]
- scale loop-induced gluon couplings by κ_g and photon couplings by κ_γ . (keep tree-level couplings at their SM value)
- probing new physics contributions to loop-induced couplings.
- No special treatment of negative μ_i



Default set of observables (in HiggsSignals-1.1.0)

The Minimal Visible Rate


using CMS-PAS-HIG-14-002


$$\kappa_{H,\text{limit}}^2 = 40 \, (10) \quad \rightarrow \quad \kappa \leq 2.51 \, (1.78) \quad \text{and} \quad \mathcal{B}(h \rightarrow \text{NP}) \leq 84\% \, (68\%)$$

Example: Ultimate Precision at the ILC

Just as an example to show why this sort of input is very flexible for all kind of studies

- Introduction
- Using the Higgs Mass and Rates in Phenomenological Analyses
 - Introduction
 - Validation
 - An Example Application of HiggsSignals
 - Projections
- SUSY Global Fits with Fittino
 - Introduction, Codes and Observables
 - Properties of the Fit
 - Results

Fitting the CMSSM

```
Using HS(,HB) + other input see e.g. arXiv:1204.4199, arXiv:1310.3045, and arXiv:1410.6035 [hep-ph] CMSSM is experimentally constrained by
```

- indirect constraints from low energy precision measurements
- direct searches for sparticles and Higgs bosons
- astrophysical observations

To evaluate the corresponding model predictions we use:

- SPheno for spectrum calculation
- FeynHiggs for Higgs properties, $(g-2)_{\mu} \& \Delta m_s$
- SuperIso for other B-Physics observables
- Prospino, Herwig++, Delphes for direct sparticle searches
- MicrOMEGAs for dark matter relic density
- DarkSUSY via Astrofit for direct detection cross section

Measurements

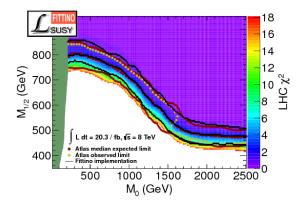
Low energy observables

$${\cal B}(B_s o \mu^+ \mu^-) \ (3.20 \pm 1.50 \pm 0.76) imes 10^{-9} \ {\cal B}(B^\pm o au^\pm
u) \ (0.72 \pm 0.27 \pm 0.11 \pm 0.07) imes 10^{-4} \ {\cal B}(b o s \gamma) \ (3.43 \pm 0.21 \pm 0.07 \pm 0.23) imes 10^{-4} \ {\Delta} m_s \ (17.719 \pm 0.043 \pm 4.200) \, {
m ps}^{-1} \ a_\mu - a_\mu^{\rm SM} \ (28.7 \pm 8.0 \pm 2.0) imes 10^{-10} \ m_W \ 80.385 \pm 0.015 \pm 0.010 \ (173.18 \pm 0.94) \, {
m GeV} \ {
m sin}^2 \, heta_{
m eff} \ 0.23113 \pm 0.00021$$

Direct searches for sparticles and Higgs Bosons

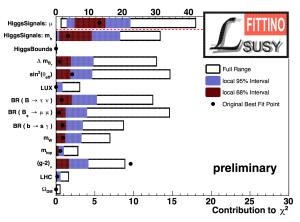
- Higgs limits via HiggsBounds
- Higgs signals via HiggsSignals
- LEP chargino mass limit
- ATLAS MET + jets + 0 lepton search (20fb $^{-1}$)

Astrophysical observables

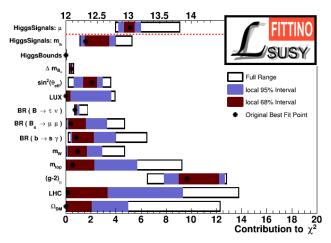

- We require χ_1^0 to be the LSP
- Dark matter relic density: $O_{GDM}h^2 = 0.1187 \pm 0.0017 \pm 0.0017$
- $\Omega_{\mathrm{CDM}} h^2 = 0.1187 \pm 0.0017 \pm 0.0119$ (Planck '13)
- Direct detection limit from 225 live days of Xenon100 ('12)

χ^2 contributions

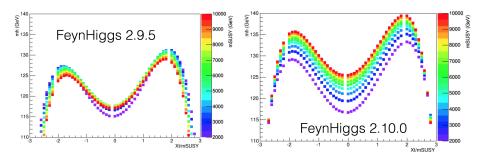
At each parameter point \vec{P} calculate:


$$\chi^2 = \left(\vec{O}_{
m meas} - \vec{O}_{
m pred}(\vec{P})
ight)^T cov^{-1} \left(\vec{O}_{
m meas} - \vec{O}_{
m pred}(\vec{P})
ight) + \chi^2_{
m limits}$$

• An example for a limit: The ATLAS 0-lepton generic SUSY search

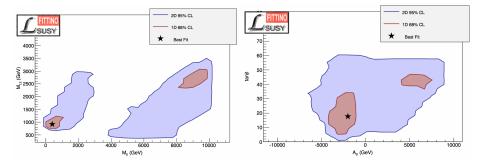

So does the Higgs do anything?

- This plot shows the variation of the χ^2 contributions for all toy fits, calculated with respect to the smeared values
- If the colored band is small: Observable has no effect on the fit
- m_h obviously has an effect, μ 's a bit.

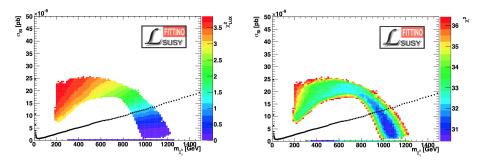


So does the Higgs do anything?

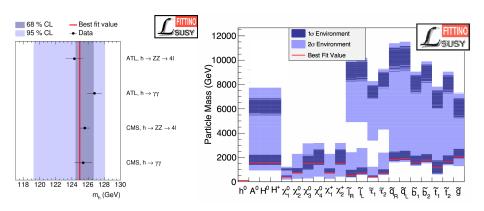
- This plot shows the variation of the χ^2 contributions for all toy fits, calculated with respect to the measured values
- If the colored band is small: Observable has no effect on the fit
- m_h obviously has an effect, μ 's a bit.


Effect of the Higgs Mass Calculation

In the CMSSM, there is still a significant uncertainty on the Higgs mass prediction

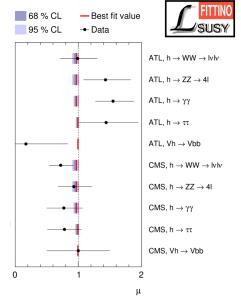


Allowed Parameter Range in the Fit


Sensitivity of Direct Detection Experiments

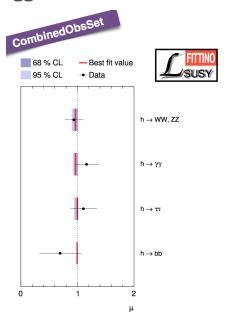
Contributions from Direct Detection
No contributions from Indirect Detection

Predicted Ranges of SUSY Particle Masses

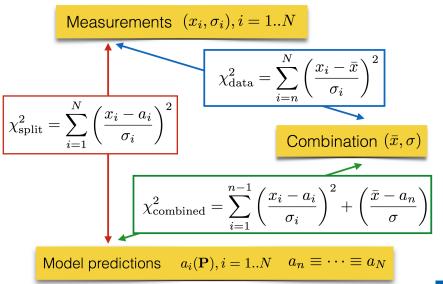


To which Higgs Maesurent Set do we Fit best?

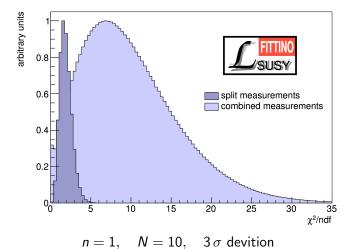
LargeObsSet $H \rightarrow WW \rightarrow \ell \nu \ell \nu (0/1 \text{ jet}) [8 \text{ TeV}]$ ATLAS CMS $[8 \text{ TeV}] H \rightarrow WW \rightarrow 2\ell 2\nu \text{ (0/1 jet)}$ $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ (2 jet) [8 TeV $[8 \text{ TeV}] H \rightarrow WW \rightarrow 2\ell 2\nu \text{ (VBF)}$ $VH \rightarrow VWW$ | 8 TeV [8 TeV] $H \rightarrow WW \rightarrow 2\ell 2\nu$ (VH) $H \rightarrow ZZ \rightarrow 4\ell \text{ (VBF/VH like)} 8 \text{ TeV}$ [8 TeV] $VH \rightarrow VWW$ (hadr. V) $H \rightarrow ZZ \rightarrow 4\ell$ (ggH like) [8 TeV [8 TeV] $WH \rightarrow WWW \rightarrow 3\ell 3\nu$ $H \rightarrow \gamma \gamma$ (conv.cntr. high p_{Tt}) 8 TeV $H \rightarrow \gamma \gamma$ (conv.cntr. low p_{Tt}) [8 TeV [8 TeV] $H \rightarrow ZZ \rightarrow 4\ell$ (0/1 jet) [8 TeV] $H \rightarrow ZZ \rightarrow 4\ell$ (2 jet) $H \rightarrow \gamma \gamma$ (conv.rest high p_{T_I}) 8 TeV $H \rightarrow \gamma \gamma$ (conv.rest low p_{Tt}) |8 TeV [8 TeV] $H \rightarrow \gamma \gamma$ (untagged 0) $H \rightarrow \gamma \gamma$ (unconv.cntr. high p_{Tt}) [8 TeV [8 TeV] $H \rightarrow \gamma \gamma$ (untagged 1) $H \rightarrow \gamma \gamma$ (unconv.cntr. low p_{Tt}) [8 TeV [8 TeV] $H \rightarrow \gamma \gamma$ (untagged 2) $H \rightarrow \gamma \gamma$ (unconv.rest high p_{Tt}) 8 TeV [8 TeV] $H \rightarrow \gamma \gamma$ (untagged 3) $H \rightarrow \gamma \gamma$ (unconv.rest low p_{Tt}) |8 TeV [8 TeV] $H \rightarrow \gamma \gamma$ (2 jet, loose) $H \rightarrow \gamma \gamma$ (conv.trans.) [8 TeV [8 TeV] $H \rightarrow \gamma \gamma$ (2 jet, tight) $H \rightarrow \gamma \gamma$ (higH mass, 2 jet, loose) |8 TeV [8 TeV] $H \rightarrow \gamma \gamma$ (ETmiss) $H \rightarrow \gamma \gamma$ (higH mass, 2 jet, tight) 8 TeV [8 TeV] $H \rightarrow \gamma \gamma$ (c) $H \rightarrow \gamma \gamma$ (low mass, 2 jet) | 8 TeV [8 TeV] $H \rightarrow \gamma \gamma (\mu)$ $H \rightarrow \gamma \gamma (1\ell)$ 8 TeV $H \rightarrow \gamma \gamma$ (ETmiss) [8 TeV [7 TeV] $H \rightarrow \gamma \gamma$ (untagged 0) $H \rightarrow \gamma \gamma$ (conv.cntr. high p_{Tt}) 7 TeV [7 TeV] $H \rightarrow \gamma \gamma$ (untagged 1) $H \rightarrow \gamma \gamma$ (conv.cntr. low p_{Tt}) [7 TeV [7 TeV] $H \rightarrow \gamma \gamma$ (untagged 2) $H \rightarrow \gamma \gamma$ (conv.rest high p_{Tt}) [7 TeV [7 TeV] $H \rightarrow \gamma \gamma$ (untagged 3) $H \rightarrow \gamma \gamma$ (conv.rest low p_{Tt}) 7 TeV $5.34 \rightarrow [7 \text{ TeV}] H \rightarrow \gamma \gamma \text{ (2 jet)}$ $H \rightarrow \gamma \gamma$ (unconv.cntr. high p_{Tt}) 7 TeV [8 TeV] $H \rightarrow \mu\mu$ $H \rightarrow \gamma \gamma$ (unconv.cntr. low p_{Tt}) [7 TeV 10.44 [8 TeV] $H \rightarrow \tau \tau$ (0 iet) $H \rightarrow \gamma \gamma$ (unconv.rest high p_{Tt}) 7 TeV [8 TeV] $H \rightarrow \tau \tau$ (1 jet) $H \rightarrow \gamma \gamma$ (unconv.rest low p_{Tt}) 7 TeV $H \rightarrow \gamma \gamma$ (conv.trans.) [7 TeV [8 TeV] $H \rightarrow \tau \tau$ (VBF) $H \rightarrow \gamma \gamma$ (2 jet) [7 TeV [8 TeV] $VH \rightarrow \tau\tau$ $H \rightarrow \tau \tau$ (boosted, hadhad) [8 TeV [8 TeV] $VH \rightarrow Vbb$ $H \rightarrow \tau \tau$ (boosted, lephad) [8 TeV [8 TeV] $ttH \rightarrow 2\ell$ (same sign) $H \rightarrow \tau \tau$ (boosted, leplep) [8 TeV $8 \text{ TeV} ttH \rightarrow 3\ell$ $H \rightarrow \tau \tau$ (VBF, hadhad) 8 TeV $[8 \text{ TeV}] ttH \rightarrow 4\ell$ $H \rightarrow \tau \tau$ (VBF, lephad) [8 TeV [8 TeV] $ttH \rightarrow tt(bb)$ $H \rightarrow \tau \tau$ (VBF, leplep) 8 TeV [8 TeV] $ttH \rightarrow tt(\gamma\gamma)$ $VH \rightarrow Vbb (0\ell)$ [8 TeV $VH \rightarrow Vbb (1\ell)$ |8 TeV [8 TeV] $ttH \rightarrow tt(\tau\tau)$ $VH \rightarrow Vbb (2\ell) | 8 \text{ TeV} |$ $H \rightarrow WW$ $H \rightarrow WW \cdot D\emptyset$ $H \rightarrow \gamma \gamma$ $H \rightarrow \gamma \gamma$ $H \rightarrow \tau \tau$ $H \rightarrow \tau \tau$ $VH \rightarrow Vbb$ $H \rightarrow bb$ $ttH \rightarrow ttbb$ -1 0


SUSY Global Fits with Fitting

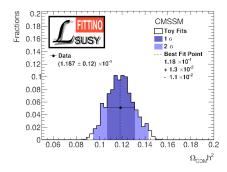
To which Higgs Maesurent Set do we Fit best?



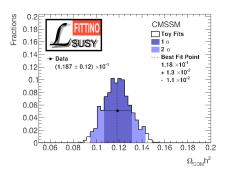
To which Higgs Maesurent Set do we Fit best?

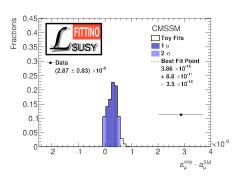


Effect of the Combination on the \mathcal{P} -value



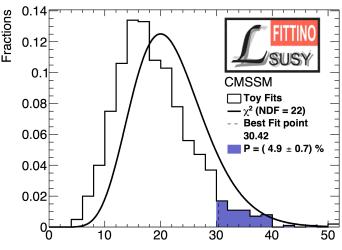
Effect of the Combination on the \mathcal{P} -value





The Culprit

The Culprit



ullet Most observables are fitted fine in the CMSSM, but not $(g-2)_{\mu}$

What is the \mathcal{P} -value of the CMSSM?

- For the first time, it has conclusively been shown that the most constrained popular SUSY model can be excluded
- Without $(g-2)_{\mu}$, the ${\cal P}$ -value with the given observable set is niversitätbonn

P-values for different Observable Sets

[arXiv:1410.6035]

preliminary	χ²/ndf	noivo n Valua (9/)	n Value (%)		
Ol O - t 'th t 1		naive p-Value (%)	p-Value (%)		
ObsSet without Higgs rates	15.5/9	7.8	1.3 ± 0.4		
SmallObsSet	27.1/16	4.0	1.9 ± 0.4		
MediumObsSet	30.4/22	10.8	4.9 ± 0.7		
CombinedObsSet	17.5/13	17.7	8.3 ± 0.8		
LargeObsSet	101.1/92	24.3	41.6 ± 4.4		
MediumObsSet without g-2	18.1/21	64	51 ± 3		

Conclusions

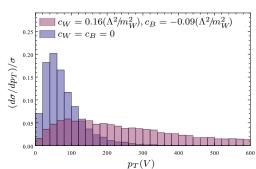
- We have the Higgs, so let's use it!
- HiggsSignals and HiggsBounds provide one (of several possible)
 way to test any model with Higgs-like articles against both the Higgs
 searches and Higgs measurements
- The CMSSM is somewhere between extremely dull and completely dead

More general SUSY is still alive

SUSY Global Fits with Fittino Results

Backup Slides

Results


Why do it differently: Kinematic (p_T) distributions

- In EFT approach: can have operators with different tensor structure
- ⇒ potential changes in kinematic distributions

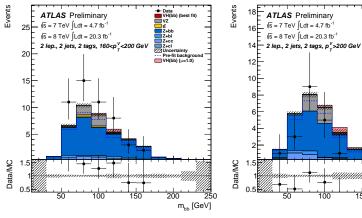
(while inclusive rate might be unaffected)

Look at the ATLAS search $pp o VH o V(bar{b})$

[Biekötter, Knochel, Krämer, Liu, Riva, 1406.7320]

Data
VH(bb) (best fit)

VH(L VZ Z+bb Z+bl


Z+cc

Z+cl

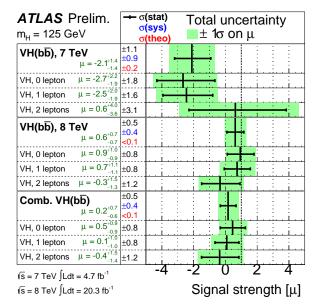
777 Uncertainty Pre-fit background

■ VH(bb) (u=1.0)

What can be used?

150 200 m_{bb} [GeV]

ATL-CONF-2013-079


What can be used?

2-jet, 2-tag sample													
	0	-lepton		1-lepton				2-lepton					
Process $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]			$p_{\mathrm{T}}^{W}[\mathrm{GeV}]$				$p_{\mathrm{T}}^{\mathrm{Z}}[\mathrm{GeV}]$						
	120-160	160-200	>200	0-90	90-120	120-160	160-200	> 200	0-90	90-120	120-160	160-200	>200
$Z \rightarrow \nu \nu$	1.6	0.9	1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
$Z \to \ell \ell$	< 0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	< 0.1	2.1	0.5	0.4	0.2	0.2
$W \to \ell \nu$	0.4	0.2	0.2	7.6	1.7	1.2	1.0	1.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
VH total	2.0	1.1	1.1	7.8	1.8	1.2	1.1	1.1	2.1	0.5	0.4	0.2	0.2
VH expected	11	5.8	6.1	42	9.5	6.6	5.6	6.1	11	2.7	2.2	1.1	1.2
Top	159	33	8	2763	729	359	113	40	166	32	8.0	0.5	< 0.1
W+c, light	21	5.3	2.7	616	65	27	12	7.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
W+b	30	10	6.1	909	106	49	25	19	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Z+c, light	23	8.1	5.2	22	2.1	0.5	0.3	0.1	91	12	5.6	1.6	1.0
Z+b	226	71	39	97	13	3.9	1.8	0.5	938	146	64	14	8.3
WW	0.5	0.1	0.1	11	1.0	0.7	0.3	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
VZ	26	11	10	145	20	12	7.6	6.5	60	8.6	4.5	2.2	2.1
Multijet	4.8	1.1	0.7	1306	45.6	8.7	4.8	0.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Bkg.	491	141	72	5869	981	460	165	74	1255	199	82	18	11.4
	± 10	± 3	± 2	± 64	± 16	± 9	± 4	± 3	± 24	± 4	± 2	± 1	± 0.5
Data	502	143	90	5916	990	458	162	79	1282	204	70	22	6
S/B	0.004	0.008	0.02	0.001	0.002	0.003	0.006	0.02	0.002	0.003	0.005	0.01	0.02

ATL-CONF-2013-079

What could we compare to, just as a simple test?

How to make use of kinematic distributions?

Example: ATLAS search for $pp \rightarrow VH \rightarrow V(b\bar{b})$ ATLAS-CONF-2013-079

- \bullet different event selections / kinematic regions:
 - (2 or 3 jets) \otimes (0, 1 or 2 leptons) \otimes (3 E_T^{miss} or 5 p_T^V bins)
- \Rightarrow 26 categories: $N_{\rm obs}$, $N_{\rm BG}$, $\Delta N_{\rm BG}$, $N_{\rm S}^{\rm SM}$ publicly available (Table 5)
 - But: no coherent information on correlations
 - Just for testing: Layman calculation:

$$\begin{split} \mu_i &= \frac{\textit{N}_{\text{obs}}^i - \textit{N}_{\text{BG}}^i}{\textit{N}_{\text{S}}^{\text{SM},i}}, \\ \delta \mu_i &= \frac{\sqrt{\textit{N}_{\text{obs}}^i + \Delta \textit{N}_{\text{BG}}^i}^2}{\textit{N}_{\text{S}}^{\text{SM},i}} \oplus \frac{\Delta \textit{N}_{\text{S}}^{\text{SM}}}{\textit{N}_{\text{S}}^{\text{SM}}} \cdot \mu_i \end{split}$$

• combination of μ^i (neglecting correlations):

$$\mu_{0\ell} = 1.15 \pm 1.06$$
 (ATLAS: 0.5 ± 0.9)
 $\mu_{1\ell} = 0.20 \pm 0.93$ (ATLAS: 0.1 ± 1.0)
 $\mu_{2\ell} = -1.70 \pm 1.79$ (ATLAS: -0.4 ± 1.5)

⇒ unfortunately unable to reproduce

What would be necessary?

- This is only a very rough first test, maybe others have made more thorough studies
- Still, it has been independently tested by 4 peoplE, with the same result

What would be necessary?

- This is only a very rough first test, maybe others have made more thorough studies
- Still, it has been independently tested by 4 peoplE, with the same result
- Of course you can say that it is not necessary that phenomenologists can use our kinematic distributions in fits.
- Unfolded distributions might improve the situation, but correlations would still be lacking, so still (other?) challenges for independent fits

What would be necessary?

- This is only a very rough first test, maybe others have made more thorough studies
- Still, it has been independently tested by 4 peoplE, with the same result
- Of course you can say that it is not necessary that phenomenologists can use our kinematic distributions in fits.
- Unfolded distributions might improve the situation, but correlations would still be lacking, so still (other?) challenges for independent fits
- I can only speculate about the concrete minimal additional information which would improve this situation, but a full set of μ 's in all 26 subchannels with a full experimental covariance matrix for bg and signal uncertainties (seperately) might be a starting point?

The obvious Likelihood Based Solution

Let's provide a rather complex function:

$$\mathcal{L}(d,P) = p_{\mu}(d|m_h,\mu_c,c,N_{jet},p_T;\vec{\eta}_b,\vec{\eta}_s)p(\vec{\eta}_b|\hat{\vec{\eta}}_b)p(\vec{\eta}_s|\hat{\vec{\eta}}_s)$$

where p_{μ} contains all correlations between all subchannels and all kinematic subdivisions, and where

- c: subchannel
- $\vec{\eta}$: scale factor for the theory uncertainties on b, s
- $\hat{\vec{\eta}}$: input scale factor for the theory uncertainties on b,s chosen by the user
- These must be vectors, separately for α_s , pdf's,..., and for different production modes, decay modes, etc.
- Could maybe be handled. All internal nuisance parameters of the experiments would be profiled out.
- Correlations between experimental nuisance parameters and theory nuisance parameters are ignored (probably rightfully so)
- Should be fast. FULL parametrization of the outcome of the PL fit after profiling out all experimental systematics.
- Provide all acceptances, efficiencies, compositions of all subchannels
- After we formulated that: Turned out to be practically what Kyle, Tilman et al. already proposed

The not so obvious gaussian approximation

- Just a short overview here:
- Provide all acceptances, efficiencies, compositions of all subchannels
- In principle it's easy: N measurements of $\hat{\mu}_i$ (i = 1, ..., N) in subchannels, kinematic bins, etc.
- Has a covariance matrix $\mathbf{C} = C_{ii'} = \rho_{ii'}\sigma_i\sigma_{i'}$
- But: $C_{ii'}$ needs to be decomposed into different error sources
- Idea (only roughly written here): Decompose $C_{ii'}$ into individual matrices

$$\mathbf{C}_{ii'} = \sum_{i} \mathbf{C}_{ii'}^{j}$$

where the $\mathbf{C}_{ii'}^{J}$ represent the uncertainty for each individual error source for each component (e.g. ggF might have a different scaling of its theory error in a new physics model than VBF, same for final states, etc)

- Then, the uncertainties in the individual matrices can be scaled
- Looks simple, but fully formulated it can become a bit ugly, too.

For the Future: The Likelihood Based Solution

• Let's provide a rather complex function:

$$\mathcal{L}(d,P) = p_{\mu}(d|m_h,\vec{\mu}_c,N_{jet},p_T,\ldots;\vec{\eta}_b,\vec{\eta}_s)p(\vec{\eta}_b|\hat{\vec{\eta}}_b)p(\vec{\eta}_s|\hat{\vec{\eta}}_s)$$

where p_{μ} contains all correlations between all subchannels and all kinematic subdivisions, and where

- c: subchannel, including kinematic bins, etc
- $\vec{\eta}$: scale factor for the theory uncertainties on b, s
- $\hat{\vec{\eta}}$: input scale factor for the theory uncertainties on b,s chosen by the user
- These must be vectors, separately for α_s , pdf's,..., and for different production modes, decay modes, etc.
- Could maybe be handled. All internal nuisance parameters of the experiments would be profiled out.
- Correlations between experimental nuisance parameters and theory nuisance parameters are ignored (probably rightfully so)
- Should be fast. FULL parametrization of the outcome of the PL fit after profiling out all experimental systematics.
- Provide all acceptances, efficiencies, compositions of all subchannels
- After we formulated that: Turned out to be practically what Kyle, Tilman et al. already proposed

SUSY Global Fits with Fittino Results

HiggsSignals

The program HiggsSignals

```
(PB,S. Heinemeyer,O. Stal,T. Stefaniak,G. Weiglein, arXiv:1305.1933, arxiv:1403:1582)
```

- ullet evaluates the total χ^2 for both the signal strengths and/or the mass measurements,
- ullet featuring two distinct χ^2 methods (peak- and mass-centered),
- includes correlations among the major externally accessible systematic uncertainties (cross sections, branching ratios, luminosity, theory mass uncertainty),
- includes many more features:
 - It finds best assignment of Higgs bosons to the signal and automatically combines signal rates of Higgses overlapping within mass resolution,
 - Framework to include signal efficiencies,
 - New (even hypothetical) signals can be implemented by the user,
 - Toy measurements can be given to existing observables for statistical studies,
 - Signal rate uncertainties can be scaled for future projections,
 - . . .

HiggsSignals is a stand-alone program using the HiggsBounds libraries. Coding language is Fortran90/2003.

HiggsSignals: The basic idea

• Take model-predictions of a given (arbitrary) Higgs sector for

$$m_k, \quad \Gamma_k^{\mathrm{tot}}, \quad \sigma_i(pp \to H_k), \quad \mathrm{BR}(H_k \to XX),$$
 with $k=1,\ldots,N, \quad i \in \{\mathrm{ggH},\mathrm{VBF},WH,ZH,t\overline{t}H\}$

for N neutral Higgs bosons as the program's user input.

Optional input: Theo. uncertainties for mass, cross sections and BR's.

- ② Calculate the predicted signal strength μ for every observable.
- **9** Perform a χ^2 test of model predictions against all available data from Tevatron and LHC, using signal rate and mass measurements.

HiggsSignals: The basic idea

Take model-predictions of a given (arbitrary) Higgs sector for

$$m_k$$
, Γ_k^{tot} , $\sigma_i(pp \to H_k)$, $\mathrm{BR}(H_k \to XX)$,

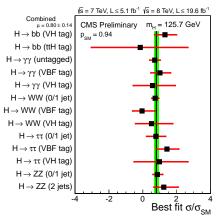
with k = 1, ..., N, $i \in \{ggH, VBF, WH, ZH, t\bar{t}H\}$ for N neutral Higgs bosons as the program's user input.

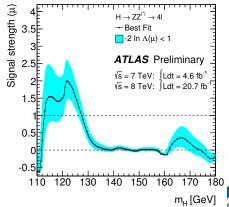
Optional input: Theo. uncertainties for mass, cross sections and BR's.

- ② Calculate the predicted signal strength μ for every observable.
- **9** Perform a χ^2 test of model predictions against all available data from Tevatron and LHC, using signal rate and mass measurements.

The aim is to be as

- model-independent as possible,
- precise as possible (given the limited public information available)




Experimental input

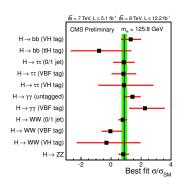
Signal strength measurements:

$$\mu_{H\to XX} = \frac{\sum_{i} \epsilon_{\mathrm{model}}^{i} \ [\sigma_{i}(pp \to H) \times \mathrm{BR}(H \to XX)]_{\mathrm{model}}}{\sum_{i} \epsilon_{\mathrm{SM}}^{i} \ [\sigma_{i}(pp \to H) \times \mathrm{BR}(H \to XX)]_{\mathrm{SM}}},$$

with $i \in \{ggH, VBF, WH, ZH, t\bar{t}H\}$ and efficiencies ϵ_i .

Experimental input

The user can directly add/remove/edit observables via text files:


```
# Published at Moriond 2013.
# Data read in from Fig. 25a.
# No efficiencies are given (for this inclusive result)
# Mass uncertainty contains 0.6 GeV (stat) and 0.5 GeV (syst) error.
#(Gauss: 0.8, linear: 1.1)
2013013101 201301301 1
ATL-CONF-2013-013
LHC, ATL, ATL
(pp) - h - ZZ - 41
8 25.3 0.036
1 1
1.1
124.3 124.3 0.1
4 -1
13 23 33 43
       124.3
                        1.293
                                        1.697
                                                         2.194
```


Peak-centered χ^2 method

- Tests agreement between model and data at the observed mass.
- Define observables by the best-fit signal strength, $\hat{\mu}_i$, at a hypothetical Higgs mass \hat{m}_i .
- The total χ^2 consists of a signal strength and a Higgs mass part,

$$\chi^2_{total} = \chi^2_{\mu} + \sum_{\text{assigned Higgses i}} \chi^2_{\text{n}}$$

- ullet Only analyses with a good mass measurement enter $\chi^2_{m_i}$ $(H o \gamma \gamma, ZZ)$
- Can be evaluated at different \hat{m}_i for each measurement
- Assign carefully chosen penalties if predicted Higgs m_i is too far off from \hat{m}_i

Good method to get a global picture on Higgs coupling properties.

SUSY Global Fits with Fittino Results

Efficiencies

Essential information! Is included in HiggsSignals if available.

Event classes		SM Higgs boson expected signal (m _H =125 GeV)							Background	
		Total	l ggH	VBF	VH	ttH	$\sigma_{\rm eff}$ (GeV)	FWHM/2.35 (GeV)	$m_{\gamma\gamma} = 125 \text{GeV}$ (ev./GeV)	
-	Untagged 0	3.2	61.4%	16.8%	18.7%	3.1%	1.21	1.14	3.3	± 0.4
TeV 5.1 fb	Untagged 1	16.3	87.6%	6.2%	5.6%	0.5%	1.26	1.08	37.5	± 1.3
	Untagged 2	21.5	91.3%	4.4%	3.9%	0.3%	1.59	1.32	74.8	± 1.9
	Untagged 3	32.8	91.3%	4.4%	4.1%	0.2%	2.47	2.07	193.6	± 3.0
7	Dijet tag	2.9	26.8%	72.5%	0.6%	-	1.73	1.37	1.7	± 0.2
8 TeV 19.6 fb ⁻¹	Untagged 0	17.0	72.9%	11.6%	12.9%	2.6%	1.36	1.27	22.1	± 0.5
	Untagged 1	37.8	83.5%	8.4%	7.1%	1.0%	1.50	1.39	94.3	± 1.0
	Untagged 2	150.2	91.6%	4.5%	3.6%	0.4%	1.77	1.54	570.5	± 2.6
	Untagged 3	159.9	92.5%	3.9%	3.3%	0.3%	2.61	2.14	1060.9	± 3.5
	Dijet tight	9.2	20.7%	78.9%	0.3%	0.1%	1.79	1.50	3.4	± 0.2
	Dijet loose	11.5	47.0%	50.9%	1.7%	0.5%	1.87	1.60	12.4	± 0.4
	Muon tag	1.4	0.0%	0.2%	79.0%	20.8%	1.85	1.52	0.7	± 0.1
	Electron tag	0.9	1.1%	0.4%	78.7%	19.8%	1.88	1.54	0.7	± 0.1
	E _T ^{miss} tag	1.7	22.0%	2.6%	63.7%	11.7%	1.79	1.64	1.8	± 0.1

An interface to insert relative efficiency scale factors $\zeta^i \equiv \epsilon^i_{\mathrm{model}}/\epsilon^i_{\mathrm{SM}}$ per tested parameter point and analysis is provided since <code>HiggsSignals-1.1</code>.

This in principle really allows arbitrary Higgs sectors

The χ^2 evaluation

In the χ^2 evaluation, we try to take into account the correlations of the major systematic uncertainties, that are publicly known. These are

- correlated luminosity uncertainty: $\Delta \mathcal{L}$,
- correlated theoretical rate uncertainties: $\Delta \sigma_i$, ΔBR_i .

Other correlations of systematics could be easily incorporated if they were public.

The global χ^2 for the signal strength measurements is then given by

$$\chi^2_{\mu} = (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{C}_{\mu}^{-1} (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}).$$

A similar calculation is done for the mass observables $\Rightarrow \chi^2_m$.

Complications with multiple neutral Higgs bosons

Any neutral Higgs boson could be responsible for the observed signal.

• Higgs boson i is assigned to the observable α , if its mass is close enough to observed signal position:

$$|m_i - \hat{m}_{\alpha}| \leq \Lambda \sqrt{(\Delta m_i)^2 + (\Delta \hat{m}_{\alpha})^2} \quad \Rightarrow \quad \text{Higgs } i \text{ assigned}$$

with tuning parameter $\Lambda \simeq 1$ (assignment range).

- If multiple Higgs bosons are assigned, their signal strengths are added incoherently: $\mu_{\alpha} = \sum_{i} \mu_{\alpha,i}$
- If no Higgs boson is assigned to an observable α , its χ^2 contribution is evaluated for zero predicted signal strength, $\mu_{\alpha} = 0$.

