

Dark Matter @ CMS

Saeid Paktinat

School of Particles and accelerators, IPM, Tehran

On behalf of the CMS Collaboration

From Higgs to Dark Matter: Second Topical Meeting,

Dr Holms Hotel, 14-17 Dec 2014, Geilo (Norway)

OUTLINE

OM Models & Signatures in CMS searches

♦Analyzing CMS data

MonoJet, MonoLepton, MonoPhoton, MonoTop, Top pairs

SUSY Searches

Perspectives for LHC Run 2

Some material borrowed from Phil Harris, Nadir Daci, Steven Lowette, Fedor Ratnikov

Introduction

First was unveiled to us through gravitational effects few decades ago, but still we know very little about it:

Particle(?), electrically neutral, not short-lived, not baryonic, not hot

as a result, the theoretical landscape is huge

three complementary search strategies

- direct detection
- indirect detection
- production at colliders

thermal freeze-out (early Univ.) indirect detection (now)

direct detection

production at colliders

DM models in CMS searches

♦ Most of the CMS DM searches use Effective Field Theories :
 ⇒ MonoJet, MonoLepton, MonoPhoton, Top pair

DM Production in Colliders

- Production in the cascade
 - SUSY, LSP in R-Parity conserving models
 - Higgs portal, Invisible higgs decay width (limited by the higgs mass)
- Pair production
 - Featured in most scenarios,
 - back-to-back pair are invisible!
 - Recoil of an SM particle against the DM pair

MonoJet : event selection

CMS Experiment at LHC, CERN Data recorded: Fri Oct 5 20:41:32 2012 CEST Run/Event: 204553 / 26729384 Lumi section: 31

Jet p_T>110 & |η|<2.4</p>

- > p_T fractions : ch. had. ≥ 20% & neutr. had. ≤ 70% & photons ≤ 70%
- > Accept 2nd jet (p_T >30 & $|\eta|$ <4.5 & $D\phi_{J_1J_2}$ <2.5) ; Veto 3rd jet (p_T , η)

et = 921.98eta = -0.463phi = 2.508

Jet 0,

Kill QCD, ttbar

Lepton veto : e/m(p_T>10 & R_{iso}<0.2) t(p_T>20 & |h|<2.3)</p>

Kill V, VV, top

MET 0, pt = 913.68 eta = 0.000 phi = -0.657

MET = Missing Transverse Energy = Vectorial sum of the visible objects
 7 MET Regions : MET > {250, 300, 350, 400, 450, 500, 550} GeV

MonoJet : signal extraction

⇒ Single-bin counting experiment after optimal MET cut Z→vv & Wjets are estimated using µ+jets and cross checked with Z->µµ.

$$QCD = QCD_{MC}^{Sgn} \times \frac{QCD_{Data}^{Ctrl}}{QCD_{MC}^{Ctrl}}, Ctrl = \{relax N; \Delta \varphi_{J1J2} < 0.3\}$$

$E_{\rm T}^{\rm miss}$ (GeV) \rightarrow	> 250	> 300	> 350	> 400	> 450	> 500	> 550
$Z(\nu\nu)$ +jets	30600 ± 1493	12119 ± 640	5286 ± 323	2569 ± 188	1394 ± 127	671 ± 81	370 ± 58
W+jets	17625 ± 681	6042 ± 236	2457 ± 102	1044 ± 51	516 ± 31	269 ± 20	128 ± 13
tī	470 ± 235	175 ± 87.5	72 ± 36	32 ± 16	13 ± 6.5	6 ± 3.0	3 ± 1.5
$Z(\ell\ell)$ +jets	127 ± 63.5	43 ± 21.5	18 ± 9.0	8 ± 4.0	4 ± 2.0	2 ± 1.0	1 ± 0.5
Single t	156 ± 78.0	52 ± 26.0	20 ± 10.0	7 ± 3.5	2 ± 1.0	1 ± 0.5	0 ± 0
QCD Multijets	177 ± 88.5	76 ± 38.0	23 ± 11.5	3 ±1.5	2 ±1.0	1 ± 0.5	0 ± 0
Total SM	49154 ± 1663	18506 ± 690	7875 ± 341	3663 ± 196	1931 ± 131	949 ± 83	501 ± 59
Data	50419	19108	8056	3677	1772	894	508
Exp. upper limit	3580	1500	773	424	229	165	125
Obs. upper limit	4695	2035	882	434	157	135	131

MonoJet : results

CMS PAS EXO-12-048

MonoLepton

♦ Advantages : clean leptonic signature

 \Rightarrow less background @ LHC

 \Rightarrow easier to trigger than monojet/monophoton

- > Largest σ for ξ =-1 > M χ > 100 GeV \Rightarrow steep drop
 - (limited ϕ -space)
- \succ "edge" depends on ξ .

Master variable →transverse mass m_T

MonoLepton : event selection

MonoLepton : signal extraction

 \Rightarrow m_T shape analysis : multi-bin counting

Major backgrounds = MC x SF from data

$$QCD = Data_{e \text{ fails iso}}^{Sgn} \left(\frac{r_{ttl}}{1 - r_{ttl}}, r_{ttl}(E_T^e, h^e) = \frac{Data_{e \text{ pass iso}}^{Ctrl}}{Data^{Ctrl}} \right)$$
$$Ctrl = \{1.5 < \frac{E_T^e}{MET} < 10\}$$
High mT tail : fit
$$f(m_T) = e^{a + bm_T + cm_T^2} m$$

CMS PAS EXO-12-060 **MonoLepton : results**

Spin-independent Interaction **Comparable to monojet reach** **Axial-Vector coupling**

Spin-dependent interaction

MonoPhoton : event selection

MonoPhoton : signal extraction

 $\Rightarrow Single-bin counting experiment after p_T(\gamma) cut$

Major backgrounds = MC x SF from data

 $W(en) = Data(Sgn, PIX matching) - \frac{1 - e_{Data}^{Match PIX}}{e_{Data}^{Match PIX}}$

$$QCD = Data^{Sgn,g \text{ fails iso}} - \frac{QCD_{Data}^{jet \text{ pass } g \text{ ID}} - QCD_{MC}^{real g}}{QCD_{Data}^{jet \text{ fail} \ge 1 \text{ iso cut}}}$$

Beam halo \Rightarrow timing distribution in data

Process	Estimate
$Z(\rightarrow \nu \bar{\nu}) + \gamma$	345 ± 43
$\mathrm{W}(ightarrow \ell u) + \gamma$	103 ± 21
W ightarrow e u	60 ± 6
jet $ ightarrow \gamma$ MisID	45 ± 14
Beam halo	25 ± 6
Others	36 ± 3
Total background	614 ± 63
Data	630

14

MonoPhoton : results CMS PAS EXO-12-047

Top Pairs & MonoTop

> Top pairs

Heavy quarks enhance sensitivity to scalar interactions

$$L_{\rm int} = \frac{m_q}{L^3} q \overline{q} C \overline{C}$$

♦ Two possible final states : $tt \rightarrow bb + ll / ljj$

♦ Signatures: 1. Large MET + 2 leptons + ≥2 Jets @low pT
 2. Large MET + 1 lepton

MonoTop

- ♦ Probe couplings that favor heavy quarks
- ♦ FCNC diagrams with new particle in the final state
- ♦ Search for scalar & vector DM particle
- \Rightarrow Signature : t → bW(qq) → 1 b-jet + 2 jets + MET

Top Pairs dileptonic CMS PAS B2G-13-004

- > Leptons : $R_{iso} < 0.12(\mu)$, 0.1 (e) ; $p_T > 20$; $|\eta| < 2.4 (\mu)$, 2.5 (e)
- > Leptons : m_{L1L2}>20 ; m_{II} = m_Z ± 15 GeV ; scalar pT sum > 120 ; $\Delta \phi$ <2
- ➢ Jets : ≥2 Jets pT>30 & |h|<5 & loose ID</p>
- Jets : scalar pT sum < 400</p>
- ➢ MET > 320

Ŵ

\Rightarrow Fit (S,B) to data

Irreducible backgrounds = MC x SF from data tt, t, DY, VV

Fakes : 1 or 2 mis-ID lepton(s)

 $\frac{e_{Data}^{N \text{loose L passes tight ID}}}{1 - e_{Data}^{N \text{loose L passes tight ID}}}$

Background Source	Yield		
tī	$0.87 \pm 0.18 \pm 0.27$		
Single top	$0.48 \pm 0.46 \pm 0.09$		
Di-boson	$0.32 \pm 0.09 \pm 0.05$		
Drell-Yan	$0.19 \pm 0.14 \pm 0.03$		
One Mis-ID lepton	$0.02 \pm 0.07 \pm 0.02$		
Double Mis-ID leptons	$0.00 \pm 0.00 \pm 0.00$		
Total Bkg	$1.89 \pm 0.53 \pm 0.39$		
Data	1		
Signal	$1.88 \pm 0.11 \pm 0.07$		

17

Top Pairs semileptonic CMS PAS B2G-14-004

- > 1 Lepton : $R_{iso} < 0.12(\mu)$, 0.1 (e) ; $p_T > 30$; $|\eta| < 2.1 (\mu)$, 2.5 (e)
- > Jets : ≥3 Jets pT>30 & $|\eta|$ <4 & loose ID & ≥1 b-jet
- > Jets/MET : $\Delta \phi$ (Jet1+Jet2 , MET) > 1.2
- > MET>320 GeV & $m_T>160$ GeV & m_{T2}^W (W decay kinematics)>200 GeV

\Rightarrow Fit (S,B) to data

Background Source	Yield
tī	$8.2 \pm 0.6 \pm 1.9$
W	$5.2\pm1.7\pm0.6$
Single top	$2.3 \pm 1.1 \pm 1.1$
Di-boson	$0.5 \pm 0.2 \pm 0.2$
Drell-Yan	$0.3 \pm 0.3 \pm 0.1$
Total Bkg	$16.4 \pm 2.2 \pm 2.7$
Data	18
Signal	$38.3 \pm 0.7 \pm 2.1$

Top Pairs : results

MonoTop : event selection

2 jets pT>60, 3rd jet pT>40 ; m3j<250 ; 1 b-jet ; all jets : |eta|<2.4</p>

- → 4th jet veto : pT > 35
- Lepton veto : pT>10(20) m(e) ; |h|<2.4(2.5) m(e) ; Riso ≤ 2</p>
- MET > 350

MonoTop : results

CMS PAS B2G-12-022

SUSY Searches

CMS PAS SUS-13-020

- To search for an R-Parity Conserving SUSY model reconstruct different relevant variables:
 - High Pt jets, leptons, photons
 - Tag the bjets
 - Total Pt of the event
 - Missing Pt of the event
 - Combined Kinematical Variables: α_T , M_T , M_{CT} , M_{T_2}
- Almost all of such SUSY searches can constrain the LSP mass, but they are usually interpreted within the simplified models which do not mean a constraint on the neutralino WIMP mass.
- Complete physics models like phenomenological MSSM which captures most of the phenomenological features of the RPC MSSM are used to constrain the neutralino WIMP mass.

pMSSM Interpretations

Flat pMSSM	Parameters	19-D Priors
------------	------------	-------------

$$\begin{split} -3 \, \mathrm{TeV} &\leq M_1, M_2 \leq 3 \, \mathrm{TeV} \\ & 0 \leq M_3 \leq 3 \, \mathrm{TeV} \\ & -3 \, \mathrm{TeV} \leq \mu \leq 3 \, \mathrm{TeV} \\ & 0 \leq m_A \leq 3 \, \mathrm{TeV} \\ & 2 \leq \tan \beta \leq 60 \\ 0 \leq \tilde{Q}_{1,2}, \tilde{U}_{1,2}, \tilde{D}_{1,2}, \tilde{L}_{1,2}, \tilde{Q}_3, \tilde{U}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3 \leq 3 \, \mathrm{TeV} \\ & -7 \, \mathrm{TeV} \leq A_t, A_b, A_\tau \leq 7 \, \mathrm{TeV}, \end{split}$$

•DCS stands for Direct CMS Search

•No astrophysical data included

• NB, absolute distributions strongly depend on the choice of priors

	Non-CMS Data Used					
1	Observable	Constraint	Likelihood function	MCMC /		
	$\mu_j(\theta)$	$D_i^{\text{non-DCS}}$	$L(D_j^{\text{non-DCS}} \mu_j(\theta))$	post-MCMC		
1a	$BR(b \rightarrow s\gamma)$	$(3.55 \pm 0.23^{stat} \pm 0.24^{th} \pm 0.09^{sys}) \times 10^{-4}$	Gaussian	MCMC		
1b	$BR(b \rightarrow s\gamma)$	$(3.43 \pm 0.21^{stat} \pm 0.24^{th} \pm 0.07^{sys}) \times 10^{-4}$	Gaussian	reweight		
2a	$BR(B_s \rightarrow \mu \mu)$	observed CLs curve from	$d(1 - CLs)/d(BR(B_s \rightarrow \mu\mu))$	MCMC		
2b	$BR(B_s \rightarrow \mu \mu)$	$(2.9 \pm 0.7 \pm 0.29^{th}) \times 10^{-9}$	Gaussian	reweight		
3a	$R(B_u \rightarrow \tau \nu)$	1.63 ± 0.54	Gaussian	MCMC		
Зb	$R(B_u \rightarrow \tau \nu)$	1.04 ± 0.34	Gaussian	reweight		
4	Δa_{μ}	$(26.1 \pm 6.3^{exp} \pm 4.9^{SM} \pm 10.0^{SUSY}) \times 10^{-10}$	Gaussian	MCMC		
5a	m_t	$173.3 \pm 0.5^{stat} \pm 1.3^{sys} \text{ GeV}$	Gaussian	MCMC		
5b	m_{t}	$173.20 \pm 0.87^{\text{stat}} \pm 1.3^{\text{sys}} \text{ GeV}$	Gaussian	reweight		
6	$m_b(m_b)$	$4.19^{+0.18}_{-0.06}$ GeV	Two-sided Gaussian	MCMC		
7	$\alpha_s(M_Z)$	0.1184 ± 0.0007	Gaussian	MCMC		
8a	m_h	pre-LHC: $m_h^{low} = 112$	1 if $m_h \ge m_h^{low}$	MCMC		
			0 if $m_h < m_h^{low}$			
8b	m_h	LHC: $m_h^{low} = 120$, $m_h^{up} = 130$	1 if $m_h^{low} \le m_h \le m_h^{up}$	reweight		
			0 if $m_h < m_h^{low}$ or $m_h > m_h^{up}$			
9	sparticle	LEP	1 if allowed	MCMC		
	masses	(via micrOMEGAs)	0 if excluded			

CMS Data Used					
Analysis	\sqrt{s}	L	Likelihood	Ref.	
Hadronic HT + MHT search	7 TeV	4.98 fb ⁻¹	method 1	CMS-SUS-12-011	
Hadronic HT + MET + b -jets search	7 TeV	4.98 fb ^{−1}	method 1	CMS-SUS-12-003	
Leptonic search for EW prod. of $\vec{\chi}^0$, $\vec{\chi}^{\pm}$, \tilde{l}	7 TeV	4.98 fb^{-1}	method 1	CMS-SUS-12-006	
Hadronic HT + MHT search	8 TeV	19.5 fb ⁻¹	method 1	CMS-SUS-13-012	
Hadronic HT + MET + b -jets search	8 TeV	19.4 fb ⁻¹	method 2	CMS-SUS-12-024	
Leptonic search for EW prod. of χ^0 , χ^{\pm} , \tilde{l}	8 TeV	19.5 fb^{-1}	method 1	CMS-SUS-12-006	
(ss, 31 and 41 channels)					

Relic density and WIMP mass

Relic density

Neutralino mass

 $\mu = Xsec coefficient$

- Z = signed Bayesian analog of the frequentist "n-sigma"
- Z > 5 means discovery
- Z < -1.64 means exclusion at 95% CL

CMS data slightly prefer lower densities and heavier WIMP.

- CMS covers already a broad panel of final states, with sensitivities to various scenarios
- ♦ So far, no new signal observed ☺
- Upper limits on the production cross sections between 10⁻¹ and 10⁻² pb
- > Upper limits on χ -nucleon interaction cross sections between 10⁻³⁸ and 10⁻⁴² cm²
- > Collider results \Rightarrow mainly limits below M χ < 10 GeV

Perspectives for LHC Run 2

- \diamond Running conditions : 13 TeV, 25 ns, $\langle PU \rangle = 40 \implies$ expect factor 4 in rate
- Need to optimise X+MET triggers to cope with such conditions
- Refine background estimations and reduce associated uncertainties
- ♦ Physics models : EFT validity is an important limitation to current searches
 ⇒ switch to simplified models with extra search parameters wrt EFT searches

