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Indirect DM Detection

Dark matter couples weakly to ordinary matter by definition⇒
Low decay/annihilation rate⇒ Small cosmic ray signature
Need particle channels where the signal is not drowned by
background
Neutral cosmic rays (ν, γ)

Unaffected by Galactic magnetic fields. No deflection
Background can be overcome by looking at DM rich targets

Charged cosmic rays
Diffusion thrugh turbulent magnetic fields. No directional
information
Low background is a must. Antimatter
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Status: Positrons and Antiprotons
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Large excess of positrons at high energies – pulsar source?
No sign of an excess in the antiproton channel
Logical next step? Antinuclei
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The Antideuteron Channel

Lightest antinucleus: p̄n̄
Low background at low energies from cosmic ray collisions on
interstellar matter

Duperray et al., arXiv:astro-ph/0503544

Energy losses during propagation populate the spectrum at low
energies. The picture after propagation is less extreme.
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Antideuteron detection

The Past The Present The Future

The BESS
experiment.
Current upper limit
on the
antideuteron flux.

The AMS-02 experiment.
Currently collecting data onboard
the ISS.

The upcoming
GAPS dedicated
antideuteron
balloon
experiment.
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Antideuteron Formation

Formation of atomic nuclei not handled in Monte Carlos. Simple
model: Coalescence

Nucleons with ∆p < p0 coalesce to form a nucleus
Additional condition: Close in position space – weakly decaying
particles considered stable
p0 calibrated against experimental data, typically large spread in
best fit p0-values between experiments and Monte Carlos
p0 ∼ 100 MeV. ΛQCD, highly sensitive to 2-particle correlations from
hadronization
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Hadronization and antideuterons

My work: Estimate uncertainty from hadronization arXiv:1207.4560 [hep-ph]

Comparison of
antideuteron spectra
generated with Herwig++
and Pythia
Large discrepancies,
especially at high and low
energies
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Tuning of Hadronization Models

Several free parameters in hadronization models tuned to fit
experimental data
Not specifically tuned to produce correct (anti)nucleon spectra or
2-particle correlations
My work: Tune 3 most important Herwig++ hadronization
parameters + p0 to reproduce experimenal antideuteron spectra
arXiv:1402.6259 [hep-ph]

Antideuteron data: ALEPH, ZEUS, CLEO, antiproton data:
ALEPH, OPAL
109 Monte Carlo events required per parameter point. Challenging
to find best fit point with finite CPU time
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Best Fit Parameters

Some 40000 CPU core hours later...

Parameter Default value Best fit value Uncertainty (1σ)∗

p0 [MeV] – 143.2 +6.2
−5.5

ClMaxLight 3.25 3.03 +0.18
−0.15

PSplitLight 1.20 1.31 +0.19
−0.32

PwtDIquark 0.49 0.48 +0.15
−0.04

Best fit χ2/d.o.f = 10.6/14.2

Likelihood function in the parameters can be used to find
uncertainty on antideuteron flux from tuned parameters

∗ Non-parabolic uncertainty calculated using the MINOS algorithm in Minuit
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Application: Gravitino Dark Matter

Gravitino: SUSY partner of the Graviton
R-parity conservation: Gravitino LSP ”absolutely” stable
R-parity violation (RPV): Gravitino is unstable but long-lived.
Operators of interest: λ′ijkLiQjD̄k, λ′′ijkŪiD̄jD̄k

ŪiD̄jD̄k operators allows decays into 3 antiquarks. Larger
antideuteron yield than typical DM decays/annihilations (to qq̄).
Φd̄ ∝ Γ ∝ λ2; results can easily be re-scaled to any value of λ
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Antideuteron Spectrum Near Earth

Propagation: NFW DM density profile, ’med’ set of diffusion
parameters
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increasing mass and
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Can set limits on mass
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experiments
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Limits on RPV couplings

Prospective upper limits from GAPS
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95% CL exclusion limits
assuming 0 observed
events
Factor 2− 4 Stronger
than existing limits on
RPV couplings
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Summary

Antideuteron channel suitable for DM searches due to low
background
Antideuteron spectrum is highly sensitive to hadronization model,
factor ∼ 3 difference between Herwig++ and Pythia
Tuning necessary for giving a consistent description
Uncertainty from tuned parameters of factor < 2 after re-tuning
Antideuterons can be used to set stronger limits on RPV couplings
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Tuned Hadronization Parameters

Tuned Herwig++ hadronization parameters:
ClMaxLight: Involved in specifying mass threshold for fission of
clusters of light quarks
PSplitLight: Controls mass distribution of clusters (of light
quarks) produced in cluster fission
PwtDIquark: Controls the probability of creating a diquark pair
during cluster decay
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Experiments: Number of bins

Experiment Nbins

ALEPH 1
CLEO 5
ZEUS 3
CERN ISR 4+4
ALICE 9
ALEPH, p/p̄ 26

χ2 from ALEPH proton data weighted down by factor 1/25 to keep it
from dominating the parameter determination

Backup Slides 16 / 13



Gravitino Dark Matter

Thermal production of Gravitinos during reheating can give the
right relic density

ΩG̃h2 ' 0.21
(

TR
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) (
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) (
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1 TeV

)2

Bolz, Brandenburg, Buchmuller; arXiv:hep-ph/0012052

The reheating temperature TR is weakly constrained, thus so is mG̃
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Gravitino RPV decays

Tree-level Feynman diagrams for decays through ŪiD̄jD̄k-operators

Circle indicates RPV coupling
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Coupling limits: BESS

Current upper limits from GAPS
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Somewhat weaker than
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Coupling limits: AMS-02
Prospective upper limits from AMS-02
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95% CL exclusion limits
assuming 0 TOF events
and 1 RICH event
. 1 expected
background event in
the RICH detector
LiQjD̄k: Slightly weaker
than p̄ limits at low
energies, roughly equal
above a few hundred
GeV
ŪiD̄jD̄k: Factor ∼ 1.5
Stronger than p̄ limits
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