From Beginning to End
Learning about the initial state from final-state measurements

Scott Pratt, Michigan State University
MADAI Collaboration
Models and Data Analysis Initiative
http://madai.us
Basic truths

1. Most initial state energy is swallowed by bulk

2. All bulk properties are driven by numerous unknown properties (model parameters)
How this was done before (v_2 and η/s)

Study single parameter vs. single observable

$v_2 \equiv \langle \cos 2\phi \rangle$

![Diagram of v_2](image)

P.Romatshke & U.Romtschke, PRL 2007

![Graph showing v_2 vs. p_T](image)
PROBLEM

v2 depends on

• viscosity
• saturation model
• pre-thermal flow
• Eq. of State
• T-dependence of \(\eta/s \)
• initial \(T_{xx}/T_{zz} \)
•
Correct Way (MCMC)

- Simultaneously vary N model parameters x_i
- Perform random walk weight by likelihood

$$L(x|y) \sim \exp \left\{ - \sum_a \frac{(y_a^{(\text{model})}(x) - y_a^{(\text{exp})})^2}{2\sigma_a^2} \right\}$$

- Use all observables y_a
- Obtain representative sample of posterior
Very Difficult Because…

I. Too Many Model Runs
Requires running model \(\sim 10^6 \) times

II. Many Observables
Could be hundreds of plots, each with dozens of points
Complicated Error Matrices
Model Emulators

1. Run the model ~1000 times
 Semi-random points (LHS sampling)

2. Determine Principal Components
 \[
 (y_a - \langle y_a \rangle) / \sigma_a \rightarrow z_a
 \]

3. Emulate \(z_a \) (Interpolate) for MCMC
 Gaussian Process…

\[
\mathcal{L}(x | y) \sim \exp \left\{ -\frac{1}{2} \sum_a (z_a^{\text{emulator}}(x) - z_a^{\text{exp}})^2 \right\}
\]

Emulator Algorithms

- **Gaussian Process**
 - Reproduces training points
 - Assumes localized Gaussian covariance
 - Must be trained, i.e. find “hyper parameters”

- Other methods also work
14 Parameters

- 5 for Initial Conditions at RHIC
- 5 for Initial Conditions at LHC
- 2 for Viscosity
- 2 for Eq. of State

30 Observables

- π, K, ρ Spectra
- $\langle p_t \rangle$, Yields
- Interferometric Source Sizes
- v_2 Weighted by p_t
Initial State Parameters

\[\epsilon(\tau = 0.8 \text{fm}/c) = f_{\text{wn}} \epsilon_{\text{wn}} + (1 - f_{\text{wn}}) \epsilon_{\text{cgc}}, \]

\[\epsilon_{\text{wn}} = \epsilon_0 T_A \frac{\sigma_{\text{nn}}}{2 \sigma_{\text{sat}}} \{1 - \exp(-\sigma_{\text{sat}} T_B)\} + (A \leftrightarrow B) \]

\[\epsilon_{\text{cgc}} = \epsilon_0 T_{\text{min}} \frac{\sigma_{\text{nn}}}{\sigma_{\text{sat}}} \{1 - \exp(-\sigma_{\text{sat}} T_{\text{max}})\} \]

\[T_{\text{min}} \equiv \frac{T_A T_B}{T_A + T_B}, \]

\[T_{\text{max}} \equiv T_A + T_B, \]

\[u_\perp = \alpha \tau \frac{\partial T_{00}}{2 T_{00}} \]

\[T_{zz} = \gamma P \]

5 parameters for RHIC, 5 for LHC
Equation of State and Viscosity

\[c_s^2(\epsilon) = c_s^2(\epsilon_h) \]
\[\quad + \left(\frac{1}{3} - c_s^2(\epsilon_h) \right) \frac{X_0 x + x^2}{X_0 x + x^2 + X'^2}, \]
\[X_0 = \sqrt{12} R c_s(\epsilon), \]
\[x \equiv \ln \frac{\epsilon}{\epsilon_h} \]
\[\frac{\eta}{s} = \left. \frac{\eta}{s} \right|_{T=165} + \kappa \ln \left(\frac{T}{165} \right) \]

2 parameters for EoS, 2 for \(\eta/s \)
1. Experiments reduce PBs to 100s of plots

2. Choose which data to analyze
 Does physics *factorize*?

3. Reduce plots to a few representative numbers, y_a

4. Transform to principal components
Checking the Distillation

Spectral information encapsulated by two numbers, dN/dy & $\langle p_t \rangle$

- **π, p spectral SHAPES**
 - 30 random points in parameter prior
 - 74 pion spectra: with $573 < \langle p_t \rangle_\pi < 575$ MeV
 - 44 proton spectra: with $1150 < \langle p_t \rangle_p < 1152$ MeV
Two Calculations

1. J. Novak, K. Novak, S.P., C. Coleman-Smith & R. Wolpert,
 ArXiv:1303.5769
 RHIC Au+Au Data
 6 parameters

2. S.P., E. Sangaline, P. Sorensen & H. Wang, in progress
 RHIC Au+Au and LHC Pb+Pb Data
 14 parameters, include Eq. of State
Sample Spectra from Prior and Posterior

ALICE

- 0-5% cent
- 20-30% cent

(a) protons
(b) kaons
(c) pions
(d) kaons
(e) kaons
(f) protons

$\frac{dN}{2N dpd\phi} \ [\text{GeV/c}]^2$ vs $p_t \ [\text{GeV/c}]$
Sample V2 from Prior and Posterior

![Graph showing v2, 20-30% cent with ALICE data points.](image)
Sample HBT from Prior and Posterior
\[\frac{\eta}{s}(T) \]

\[
\frac{\eta}{s} = \left(\frac{\eta}{s}\right)_0 + \kappa \ln\left(\frac{T}{165}\right)
\]
η/s vs saturation picture

See Drescher, Dumitru, Gombeaud and Ollitrault
PRC 2007
Eq. of State

\[
c_s^2(\epsilon) = c_s^2(\epsilon_h) + \left(\frac{1}{3} - c_s^2(\epsilon_h) \right) \frac{X_0 x + x^2}{X_0 x + x^2 + X'^2},
\]

\[
X_0 = X' R c_s(\epsilon) \sqrt{12},
\]

\[
x \equiv \ln \frac{\epsilon}{\epsilon_h}
\]
Which observables constrain the EoS?
Sensitivity to Uncertainty

Constraining Eq. of State with RHIC/LHC Data (MADAI Collab.)

- **UNCONSTRAINED**
- **CONSTRAINED WITH 9% UNCERTAINTIES**
- **CONSTRAINED WITH 6% UNCERTAINTIES**
- **Lattice: Hot QCD / BW upper/lower ranges (arXiv:1407.6387)**

C_s^2 (speed of sound squared)

T (MeV)
CONCLUSIONS

♦ Robust
♦ Emulation works splendidly
♦ Scales well to more parameters & more data
♦ Eq. of State and Viscosity can be extracted from RHIC & LHC data
♦ Other parameters not as well constrained
♦ Heavy-Ion Physics can be a Quantitative Science!!!!
FUTURE

- Improve statement of uncertainties
- Add parameters (many related to hadronization)
- Consider more data
 - more observables
 - data from different beams/energies
- Improve models
 - Lumpy Glauber initial conditions
 - 3D calculations for lower energies
 - Fill in missing physics
If you’re interested…

1. Tools are easily extended
2. Download software and tutorial from http://madai.us
3. Talk to me (prattsc@msu.edu)
 or Evan Sangaline (esangaline@gmail.com)

Made possible by contributions from DOE, NSF, Chris Coleman-Smith, John Novak, Kevin Novak, Evan Sangaline, Paul Sorensen, Joshua Vredevoogd, Hui Wang, Robert Wolpert, and viewers like you.
Additional slide: Charge BFIs and charge susceptibilities