Jet vs. Jettiness – the event shape in
p + A and e + A collisions

Jianwei Qiu
Brookhaven National Laboratory

Based on works by Z. Kang, X. Liu, S. Mantry, J. Qiu, …
D. Kang, C. Lee, I. Stewart, …
1204.5469, 1303.6952, 1303.6954,
1312.0301, 1404.6706, …

The 2nd International Conference on the Initial Stages in High-Energy Nuclear Collisions (IS2014)
Embassy Suites Napa Valley, Napa, CA, December 3rd - 7th, 2014
Jets

- **Definition:**
 - Inclusive cross section with limited phase space
 - “footprints” or “trace” of quarks and gluons

Sterman & Weinberg, PRL 1977
Suppression of jets – Jet quenching

- Jets vs. leading hadron:
 - Narrow jet
 - Same suppression as leading hadron

- Similar R_{AA}

Graphs showing R_{AA} as a function of p_T and $p_{T,\text{jet}}$ for different centrality and jet types.
Where does the lost energy go?

- **Medium induced radiation:**
 - Small angle in/near cone
 - Thermalize with the medium:
 - Broaden the jet

No suppression if the cone is bigger enough!
Radiation is gone!
Jet cone dependence!

Where does the lost energy go?

We do not know, since we did not keep track of every particles

What if we do keep track of every particles?

We should know the full event shape!
Event shapes

- Event shapes are theoretically cleaner (more inclusive!):

- Thrust, as an example:

\[T = \max_i \frac{\sum_i |\hat{t} \cdot \vec{p}_i|}{\sum_i |\vec{p}_i|} \]

- Two jet configurations obtained in the limit:

\[T \rightarrow 1 \]

- Resummation of logarithms of \((1-T)\), corresponds to a resummation of the jet veto logs

- Structure of resummation is simpler, *no jet algorithm dependence* (jet algorithm dependence begins at NNLO with two emissions)
N-Jettiness

- Event structure:
 \[pp \rightarrow \text{leptons plus jets} \]

- N-Jettiness:
 \(\tau_N^{i} = \sum_k \min_i \left\{ \frac{2q_i \cdot p_k}{Q_i} \right\} \)

 The sum include all final-state hadrons excluding more than \(N \) jets

 Allows for an event-shape based analysis of multi-jets events (a generalization of Thrust), and is complementary to jets

- N-infinitely narrow jets – isolated single hadron(s) (jet veto):
 As a limit of N-Jettiness: \(\tau_N \rightarrow 0 \)
N-Jettiness – implementation

Steps for implementation:

- Use a standard jet algorithms to find N-jets
- Initial reference vectors = momenta of the N-jets + hadron beam directions (reference vectors are the only information used from the jet algorithm)
- Calculate value for the N-jettiness global event shape: \(\tau_N \) (new reference directions from the minimization)
- Select events with N narrow well-separated jets and impose veto on additional jets

New “jet” momenta = sum of momenta in jet regions

\[
P_i^\mu = \sum_k p_k^\mu \prod_{j \neq i} \theta(\hat{q}_j \cdot p_k - \hat{q}_i \cdot p_k)
\]

N-jettiness momentum = sum of jettiness from each region:

\[
\tau_N = \sum_i \tau_N^i = \sum_i 2\hat{q}_i \cdot P_i
\]

Dependence on Jet algorithms is power suppressed
1-Jettiness cross section in DIS

Very much "like" the calculation for the "Thrust"
(Minimization vs maximization!)

\[\tau_1 = \frac{2}{Q^2} \sum_i \min\{q_B \cdot p_i, q_J \cdot p_i\} \]

\[d\sigma_A \equiv \frac{d^3\sigma(e^- + N_A \rightarrow J + X)}{du \ dP_{JT} \ d\tau_1} \]

1-jettiness: global event shape
Event shape with 1-Jettiness

- Configurations of large and small 1-jettiness:

\[\tau_1 \sim P_{J_T} \]
\[\tau_1 \ll P_{J_T} \]

- 1-jettiness distributions can be a probe of nuclear structure and dynamics.

Most importantly, the radiation pattern following the additional scattering
Event shapes for DIS

- Event shapes have been studied before in DIS:
 - Breit Frame
 - Thrust, NLL +NLO
 - Broadening, NLL +NLO
 - Non-Global Event Shapes

- 1-jettiness global event shape for DIS was first introduced about a year ago:
 - 1-jettiness factorization in SCET
 - Proposed as probe of nuclear physics
 - Proton target, NLL results

- More recently:
 - NNLL resummation
 - Variety of nuclear targets: Proton, C, Ca, Fe, Au, Ur

- Most recently:
 - Also, considered 1-jettiness with NNLL resummation
 - Introduced two new variations of 1-jettiness and their factorization
 - Analysis restricted to proton target

- Matching from small τ to large $\tau
Three ways to define the 1-jettiness

\[q_B = xP \]
\[q_J = \text{true jet axis} \]

Kang, Mantry, Qiu (2012)

\[p_{\text{ISR}} = (\xi - x)P + k_\perp \]
\[q_J = q + xP - k_\perp \]
\[k_\perp \sim Q\lambda \]

\[\tau_1^a \]

CM frame

\[\mathcal{H}_B \quad \mathcal{H}_J \]

\[p_J \]

\[q_J \text{ true jet axis} \]

\[p_B \]

\[q \]

\[\xi P \quad xP - k_\perp \]

\[q_j \text{ is A}ligned with the jet momentum, with no relative label transverse momentum: find by jet algorithm or minimization} \]

\[\text{depends on momenta of final-state hadrons} \]
Three ways to define the 1-jettiness

\[\tau_1^b \]

\[q_B = xP \]
\[q_J = q + xP \]

same as DIS thrust by Antonelli, Dasgupta, Salam (1999)

\[q_J \] no longer exactly aligned with jet, but simpler in that \(q + xP \) is given only by lepton and initial-state proton momenta

Breit frame:
\[q = (Q, 0, 0, Q) \]
\[q_B = Q\hat{n}_z \quad q_J = Qn_z \]

1-jettiness regions are hemispheres in Breit frame

Direction of scattered quark at lowest order
Three ways to define the 1-jettiness

\[q_B = P \]
\[q_J = k \]

(measured momentum)
Kang, Lee, Stewart 2013

measures thrust in back-to-back hemispheres in Center-of-momentum frame

momentum transfer \(q \) itself has a nonzero transverse component:

\[
q = y \sqrt{s \frac{n_z}{2}} - xy \sqrt{s \frac{\hat{n}_z}{2}} + \sqrt{1 - y} Q \hat{n}_\perp
\]

seemingly simplest definition: in practice hardest to calculate!

Restriction: \(p_J^\perp \) has to be small for 1-jettiness \(\tau_1^c \) to be small \(\Rightarrow 1 - y \sim \lambda^2 \)
Tree-level 1-jettiness distribution

\[
d\sigma_A \equiv \frac{d^3\sigma(e^- + N_A \rightarrow J + X)}{dy
dP_{JT} d\tau_1}
\]

Two scales observables!
- \(P_T \): localized probe
- \(\tau_1 \): sensitive to event shape

Tree-level distribution in 1-jettiness:

\[
\frac{d^3\sigma^{(0)}}{dy dP_{JT} d\tau_1} = \sigma_0 \delta(\tau_1) \sum_q e_q^2 \frac{1}{A} f_{q/A}(x_A, \mu)
\]
Hierarchy of energy scales

\[d\sigma_A \equiv \frac{d^3\sigma(e^- + N_A \rightarrow J + X)}{dy \ dP_{JT} \ d\tau_1} \]

- Hierarchy of scales:
 \[Q_S, \Lambda_{QCD} \ll \tau_1 \ll P_{JT} \]

- Nuclear scales
- I-jettiness
- Jet transverse momentum

- Jet-veto Sudakov logarithms:
 \[\sim \alpha_s^n \ln^{2n}(\tau_1 / P_{JT}) \]

- Hard:
 \[\mu_H \sim P_{JT} \]

- Beam, Jet:
 \[\mu_B \sim \mu_J \sim \sqrt{\tau_1 P_{JT}} \]

- Soft:
 \[\mu_S \sim \tau_1 \]

- Nuclear:
 \[Q_s^2(A) \sim A^\alpha \Lambda_{QCD}^2 \]
Factorization – SCET

- Schematic form of factorization:

\[
\frac{d^3\sigma}{dy dP_{JT} d\tau_1} \sim H \otimes B_A \otimes J \otimes S,
\]

- Beam function
- Soft function
- Jet function
- Hard function

- Hard function
- Beam function
- Jet function
- Soft function
Factorized cross section

- Detailed form of factorization:

\[
\frac{d^3\sigma}{dydP_Td\tau_1} = \frac{\sigma_0}{A} \sum_{q,i} e_q^2 \int_0^1 dx \int ds_J \int dt_a \times H(xAQ_e P_T e^{-y}, \mu; \mu_H) \delta \left[x - \frac{e^y P_T}{A(Q_e - e^{-y} P_T)} \right] \\
\times J^q(s_J, \mu; \mu_J) B^q(x, t_a, \mu; \mu_B) \times S \left(\tau_1 - \frac{t_a}{Q_a} - \frac{s_J}{Q_J}, \mu; \mu_S \right),
\]

- Beam function matching onto the PDF:

(Fleming, Leibovich, Mehen; Jouttenus, Stewart, Tackmann, Waalewijn)

\[
B^q(x, t_a, \mu; \mu_B) = \int_x^1 \frac{dz}{z} T^q_i \left(\frac{x}{z}, t_a, \mu; \mu_B \right) f_{i/A}(z, \mu_B)
\]

- Tree-level matching:

\[
B^q(x, t_a, \mu_B) = \delta(t_a) f_{q/A}(x, \mu_B)
\]

\~\text{“collinear” “perturbative”}
Resummation

- Resummation achieved through renormalization group equations:

\[
\begin{align*}
\mu_H & \sim P_{J_T} \\
\mu_B & \sim \mu_J \sim \sqrt{\tau_1 P_{J_T}} \\
\mu_S & \sim \tau_1 \\
Q_s(A) & \\
\end{align*}
\]

- All objects in factorization formula have well defined evolution equations:

\[
\begin{align*}
\mu \frac{d}{d\mu} H(Q^2, \mu) &= \gamma_H H(Q^2, \mu), \\
\mu \frac{d}{d\mu} B_A^q(x, t, \mu) &= \int dt' \gamma_B(t - t', \mu) B_A^q(x, t', \mu), \\
\mu \frac{d}{d\mu} J(s, \mu) &= \int ds' \gamma_J(s - s', \mu) J(s', \mu), \\
\mu \frac{d}{d\mu} S(k_a, k_J, \mu) &= \int dk_a' \int dk_J' \gamma_S(k_a - k_a', k_J - k_J', \mu) S(k_a', k_J', \mu)
\end{align*}
\]
Differences between the three definitions

\[
\frac{1}{\sigma_0} \frac{d\sigma(x, Q^2)}{d\tau^a_1} = H(Q^2, \mu) \int dt_J dt_B dk_S \delta \left(\tau^a_1 - \frac{t_J}{Q^2} - \frac{t_B}{Q^2} - \frac{k_S}{Q} \right) \\
\times J_q(t_J, \mu) B_q(t_B, x, \mu) S(k_S, \mu)
\]

Z. Kang, Mantry, Qiu, 2012

\[
\frac{1}{\sigma_0} \frac{d\sigma(x, Q^2)}{d\tau^b_1} = H(Q^2, \mu) \int d^2 p_\perp dt_J dt_B dk_S \delta \left(\tau^b_1 - \frac{t_J}{Q^2} - \frac{t_B}{Q^2} - \frac{k_S}{Q} \right) \\
\times J_q(t_J - p_\perp^2, \mu) B_q(t_B, x, p_\perp^2, \mu) S(k_S, \mu)
\]

D. Kang, Lee, Stewart, 2013

\[
\frac{1}{\sigma_0} \frac{d\sigma(x, Q^2)}{d\tau^c_1} = H(Q^2, \mu) \int d^2 p_\perp dt_J dt_B dk_S \delta \left(\tau^c_1 - \frac{t_J}{Q^2} - \frac{t_B}{xQ^2} - \frac{k_S}{\sqrt{xQ}} \right) \\
\times J_q(t_J - (q_\perp + p_\perp)^2, \mu) B_q(t_B, x, p_\perp^2, \mu) S(k_S, \mu)
\]

D. Kang, Lee, Stewart, 2013
1-jettiness and rapidity distribution

One can study distributions in the space of:

\[\{ A, Q_e, P_{J_T}, y, \tau_1 \} \]

Proton target: NNLL resummation

- Larger \(\tau \) less "jet" structure
- Smaller \(\tau \) better "jet" structure
1-Jettiness cross section in e+A DIS

View in the center of mass frame

Multiple scattering
Change in radiation pattern

Same definition:

$$\tau_1 = \frac{2}{Q^2} \sum_i \min\{q_B \cdot p_i, q_J \cdot p_i\}$$

Additional variable: A

1-jettiness: global event shape
1-Jettiness cross section in e+A DIS

Leading power case

Factorization formula:

$$\left. \frac{d^3\sigma}{dydP_{JT}d\tau_1} \right|_{EPS09} = \sigma_0 \sum_{q,i} e_q^2 \int_{x_*}^{1} \frac{dx}{x} \int ds_J \int dt_a \times H(\xi^2, \mu; \mu_H) J^q(s_J, \mu; \mu_J) T^{qi} \left(\frac{x_*}{x}, t_a, \mu; \mu_B \right) \times S \left(\tau_1 - \frac{t_a}{Q_a} - \frac{s_J}{Q_J}, \mu; \mu_S \right) f_{i/A}^{EPS09}(x, \mu_B),$$

Lower limit of Bjorken-x integration:

$$x_* = \frac{e^y P_{JT}}{Q_e - e^{-y} P_{JT}}$$

Determines the Bjorken-x region

See appendices of arXiv: 1303.3063 for details on each functions and their evolutions

Similar leading power factorization formula for p+A collisions

Two beam functions, two soft functions
Nuclear PDFs

- At leading twist, we directly probe nuclear PDFs (Eskola, Paukunnen, Salgado)

\[f_{u/A}^{EPS09}(x, \mu) = \frac{Z}{A} R_u^A(x, \mu) f_{u/p}(x, \mu) + \frac{A-Z}{A} R_d^A(x, \mu) f_{d/p}(x, \mu), \]
\[f_{d/A}^{EPS09}(x, \mu) = \frac{Z}{A} R_i^A(x, \mu) f_{d/p}(x, \mu) + \frac{A-Z}{A} R_u^A(x, \mu) f_{u/p}(x, \mu), \]
\[f_{s,c,b/A}^{EPS09}(x, \mu) = R_{s,c,b}^A(x, \mu) f_{s,c,b/p}(x, \mu), \]
\[f_{g/A}^{EPS09}(x, \mu) = R_{g}^A(x, \mu) f_{g/p}(x, \mu), \]

- Schematic behavior of nuclear modification factors

[Graph showing the behavior of the nuclear modification factor \(R_L(x, \mu) \)]

\[R_L(x, \mu) = \frac{\sum_q e_q^2 f_{E}^{EPS09}(x, \mu)}{\sum_q e_q^2 f_{q/p}(x, \mu)} \]
Scale variations – theory uncertainty

- Four independent scale variations employed to estimate perturbative uncertainties: (Stewart, Tackmann, Waalewijn)

(a) $\mu = \mu_H = r \sqrt{\xi^2}$, $\mu_B = r \sqrt{Q_a \tau_1}$, $\mu_J = r \sqrt{Q_J \tau_1}$, $\mu_S = r \tau_1$,
(b) $\mu = \mu_H = \sqrt{\xi^2}$, $\mu_B = \sqrt{Q_a \tau_1}$, $\mu_J = \sqrt{Q_J \tau_1}$, $\mu_S = r^{-\frac{1}{4} \ln \frac{\tau_1}{\xi}} \tau_1$,
(c) $\mu = \mu_H = \sqrt{\xi^2}$, $\mu_B = r^{-\frac{1}{4} \ln \frac{\tau_1}{\xi}} \sqrt{Q_a \tau_1}$, $\mu_J = \sqrt{Q_J \tau_1}$, $\mu_S = \tau_1$,
(d) $\mu = \mu_H = \sqrt{\xi^2}$, $\mu_B = \sqrt{Q_a \tau_1}$, $\mu_J = r^{-\frac{1}{4} \ln \frac{\tau_1}{\xi}} \sqrt{Q_J \tau_1}$, $\mu_S = \tau_1$,

$\xi^2 \equiv \frac{P_{JT}^2}{1 - e^{-y} P_{JT} / Q_e}$

$r = \{1/2, 2\}$
1-jettiness distribution in e+\(A\) for various nuclei

NNLL resummation

\[Q_e = 90 \text{ GeV} \]
\[P_{JT} = 20 \text{ GeV} \]
\[y = 0 \]

Effect of nPDFs and smearing
Jet rapidity distributions in $e+\Lambda$ for various nuclei

Effect of nPDFs and smearing

NNLL resummation

\[Q_e = 90 \text{ GeV}, \]
\[P_{J_T} = 20 \text{ GeV}, \]
\[\tau_1 = 1.5 \text{ GeV}. \]
Jet rapidity: Nuclei over Proton

\[R_A(\tau_1, P_{J_T}, y) = \frac{d\sigma_A(\tau_1, P_{J_T}, y)}{d\sigma_p(\tau_1, P_{J_T}, y)} \]

NNLL resummation

\[Q_e = 90 \text{ GeV} \]
\[P_{J_T} = 20 \text{ GeV} \]
\[\tau_1 = 1.5 \text{ GeV} \]

\[x_* = \frac{e^y P_{J_T}}{Q_e - e^{-y} P_{J_T}} \]

\[x_* \in [0.2, 0.7] \]

Effect of nPDFs and smearing
Matching from low τ to high τ

- **Low τ vs high τ:**
 - Low τ: Resummation by using SCET
 - High τ: Fix order perturbative calculation

- **Matching:**
 \[
 d\sigma = \left[d\sigma_{\text{resum}} - d\sigma_{\text{resum}}^{FO} \right] + d\sigma^{FO}
 \]

- **Three regions:**
 \[
 \tau_1 \sim \Lambda_{QCD}, \\
 \Lambda_{QCD} \ll \tau_1 \ll P_{JT}, \\
 \tau_1 \sim P_{JT},
 \]

- **Beam function:**
 \[
 B \sim I \otimes f
 \]

- **Eqs.:**
 \[
 d\sigma_{\text{resum}} = \frac{d^3\sigma_{\text{resum}}}{dydP_{JT}d\tau_1} \sim H \otimes B \otimes J \otimes S
 \]
 \[
 \mu_H \sim P_{JT}, \quad \mu_J \sim \mu_B \sim \sqrt{\tau_1 P_{JT}}, \quad \mu_S \sim \tau_1
 \]

 \[
 d\sigma^{FO}_{\text{resum}} = d\sigma_{\text{resum}}(\mu = \mu_H = \mu_J = \mu_B = \mu_S)
 \]

 \[
 d\sigma^{FO} \sim \int dPS \hat{F}_{\text{meas.}}([PS]) |M|^2 \otimes f
 \]
Matching from low τ to high τ

- Full spectrum in τ_1 on proton:

Kang, Liu, Mantry, 1312.0301

Graph showing $\Delta \sigma/\Delta \tau_1$ (fb/GeV) vs τ_1 (GeV) with different color curves labeled as Expanded SCET, NNLL SCET, NLO QCD.
Event shapes based analysis can be a useful tool to probe gluon shower and induced radiation.

- Allows for jet shape analysis, and also gives information on wide-angle soft radiation – complementary to jet x-section.
- Probe nuclear dynamics through distributions in multiple dimensional space on various nuclear targets:
 \[\{ A, Q_e, P_{JT}, y, \tau_1 \} \]
- SCET can be a natural tool to take care of the resummation of large logarithms from various scales.
- Many directions can be pursued with event shape analysis ...

Thank you!
BACKUP SLIDES
DIS Kinematics

\[s = (k + P)^2 \]

\[Q^2 = -q^2 \]

\[x = \frac{Q^2}{2P \cdot q} \]

\[y = \frac{P \cdot q}{P \cdot k} \]

\[Q^2 = xys \]

\[p_X = q + P \]

\[p_X^2 = \frac{1 - x}{x} Q^2 \]

Limit \(x \rightarrow 1 \) corresponds to single collimated jet in final state.

We will look away from \(x = 1 \) at two-jet like final states.
Kinematics

- **Electron momentum:**
 \[p_{e}^{\mu} = (p_{e}^{0}, \vec{p}_{e}) \]

- **Nucleus momentum:**
 \[P_{A}^{\mu} = A(p_{e}^{0}, -\vec{p}_{e}) \]

- **Electron energy:**
 \[p_{e}^{0} = |\vec{p}_{e}| = \frac{Q_{e}}{2} \]

- **Center of mass energy squared:**
 \[s = (p_{e} + P_{A})^{2} = A \frac{Q_{e}^{2}}{2} \]

- **Center of mass energy per nucleon:**
 \[Q_{e} \]
A clean calibration and a lot more:

- Study jet distributions in e-A collisions.
- Probe of nuclear PDFs at leading twist.
- Higher twist correlations.
- Parton propagation through cold nuclear matter.
- Energy loss mechanisms.
- Nuclear medium effects.
- ...
Power corrections

- Many different sources of power corrections.

- Dominant nuclear-dependent power corrections come from the OPE of the beam function

\[B^q(x, t_a, \mu; \mu_B) = \int_x^1 \frac{dz}{z} I^{qi} \left(\frac{x}{z}, t_a, \mu; \mu_B \right) f_i/A(z, \mu_B) + O\left(\frac{Q_s^2(A)}{t_a} \right) \]

- Size of power corrections controlled by

\[\frac{Q_s^2(A)}{t_a} \sim \frac{A^\alpha \Lambda^2_{QCD}}{\tau_1 P_{JT}} \]

- Higher twist correlations

- Nuclear medium effects: energy loss, multiple scattering, ...

- Power corrections can be studied as a function of: \(\{ A, \tau_1, P_{JT} \} \)
Non-perturbative region

- Hierarchy of scales:

\[
\frac{d^3 \sigma}{dy dP_{JT} d\tau_1} \sim H \otimes B_A \otimes J \otimes S, \quad P_{JT} \gg \sqrt{\tau_1 P_{JT}} \gg \tau_1
\]

- Soft function becomes non-perturbative for:

\[
\tau_1 \sim \Lambda_{QCD}
\]

- Soft function model

\[
S(k_a, k_J, \mu_S) = \int dk'_a \int dk'_J S_{\text{part.}}(k_a - k'_a, k_J - k'_J, \mu_S) S_{\text{mod.}}(k'_a, k'_J).
\]

\[\text{perturbative soft function}\]

\[\text{model}\]
Role of Jet’s cone size

- Cone size dependence of Jet quenching:

 - Multiple scattering \(\rightarrow \) radiation \(\rightarrow \) energy loss \(\rightarrow \) cone size \(\rightarrow \) …

Ratio is consistent with vacuum jets for peripheral and central collisions