OUTLOOK:

\(J/\psi, \psi(2S) \) and \(\Upsilon(1S), \Upsilon(2S), \Upsilon(3S) \)

in p-Pb \(\leftrightarrow \) collisions

(and Pb-Pb \(\leftrightarrow \) collisions)
Sequential melting depending on the binding energies of the quarkonium states

\[T < T_c \quad \psi(2S) \quad J/\psi \quad \Upsilon(1S) \]
\[T \approx T_c \quad J/\psi \quad \Upsilon(1S) \]
\[T \approx 3T_c \quad \Upsilon(1S) \]
\[T >> T_c \]

(Re)combination
Increasing the collision energy the c\bar{c} pair multiplicity increases

→ enhanced quarkonium production via (re)combination at hadronization or during QGP stage

<table>
<thead>
<tr>
<th>Most central AA collisions</th>
<th>SPS 20 GeV</th>
<th>RHIC 200 GeV</th>
<th>LHC 2.76 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{c\bar{c}baryon} / \text{event})</td>
<td>(\sim 0.2)</td>
<td>(\sim 10)</td>
<td>(\sim 75)</td>
</tr>
</tbody>
</table>

On top of these mechanisms related to hot matter:

- cold matter effects (CNM)
 - nuclear parton shadowing
 - energy loss
 - $c\bar{c}$ in medium break-up

investigated through \textbf{p-A collisions}

\textbf{p-A collisions at low \sqrt{s}}

- Quarkonium significantly affected by CNM effects with strong kinematic dependence

- J/ψ and $\psi(2S)$ behaviour in p-A collisions strongly influenced by break-up mechanism depending on charmonia crossing and formation time

E866 Collab., PRL 84 (2000) 3256
On top of these mechanisms related to hot matter:

cold matter effects (CNM):

- nuclear parton shadowing
- energy loss
- $c\bar{c}$ in medium break-up

investigated through **p-A collisions**

A-A collisions at low \sqrt{s}

Quarkonium suppression in AA collisions observed already at SPS and RHIC:

- similar patterns if CNM effects are taken into account

\rightarrow Compensation of suppression/recombination effects?
With respect to lower energy experiments, at LHC we have:

- **higher energies**
 - stronger quarkonium suppression?

- **more charm**
 - larger (re)combination?

- **more bottom**
 - Υ can be investigated

Complementary quarkonium results from LHC experiments!
QUARKONIUM AT LHC: Pb–Pb RESULTS

CMS Preliminary
PbPb $\sqrt{s_{NN}} = 2.76$ TeV
$\gamma(1, 2, 3S)$

L_{int} (PbPb) = 147μb$^{-1}$

Events/(GeV/c2)

ρ, ω, ϕ

J/ψ

$\psi(2S)$

Z

$p_T^{\mu} > 4$ GeV/c

$m_{\mu\mu}$ (GeV/c2)
ALICE results show weaker centrality dependence and smaller suppression for central events with respect to PHENIX

→ behaviour expected in a (re)combination scenario
QUARKONIUM AT LHC: Pb-Pb RESULTS

- Improved agreement between ALICE and CMS data (new pp CMS reference)
- Large statistics and systematic uncertainties prevent a firm conclusion on the ψ(2S) trend vs centrality
First clear observation of sequential $\Upsilon(nS)$ suppression

$\Upsilon(1S)$ suppression consistent with melting of excited states ($\sim50\%$ feed-down)

Suppression of $\Upsilon(1S)$ stronger than at RHIC
p-Pb: ROLE OF CNM EFFECTS ON J/ψ

- **CNM effects investigated through the nuclear modification factor** R_{pA}

$$R_{pA}^{J/ψ} = \frac{Y_{pA}^{J/ψ}}{\langle T_{pA} \rangle \sigma_{pp}^{J/ψ}}$$

- **J/ψ behaviour strongly y dependent**
 - strong $J/ψ$ suppression at forward-y
 - no suppression in the backward region

- **Good agreement between ALICE and LHCb results**

Michael Winn - Friday
p-Pb: Role of CNM Effects on J/ψ

CNM effects investigated through the nuclear modification factor R_{pA}

$$R_{pA}^{J/ψ} = \frac{Y_{pA}^{J/ψ}}{\langle T_{pA} \rangle \sigma_{pp}^{J/ψ}}$$

- J/ψ behaviour strongly y dependent
 - strong J/ψ suppression at forward and mid-y
 - no suppression in the backward region

Fair agreements with models based on shadowing + energy loss
p-Pb: Role of CNM Effects on J/ψ

backward-γ

ALICE Preliminary
p-Pb \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \), inclusive J/ψ \(\rightarrow \mu^+\mu^- \)
4.46 < \(y_{	ext{cms}} < 2.96 \), \(L_{\text{int}} = 5.8 \text{ nb}^{-1} \)

forward-γ

ALICE Preliminary
p-Pb \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \), inclusive J/ψ \(\rightarrow \mu^+\mu^- \)
2.63 < \(y_{	ext{cms}} < 3.53 \), \(L_{\text{int}} = 5.0 \text{ nb}^{-1} \)

mid-γ

ALICE Preliminary
p-Pb \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \), inclusive J/ψ \(\rightarrow e^+e^- \)
-1.37 < \(y_{	ext{cms}} < 0.43 \)

Fair Agreements with Models

Based on shadowing + energy loss except at forward-γ and low \(p_T \).
\(Q_{pA} \): nuclear modification factor potentially influenced by a bias in the event activity estimator.

\[
Q_{pA} = \frac{Y_{J/\psi}^{pA}}{\langle T_{pA} \rangle \sigma_{pp}^{J/\psi}}
\]

forward-\(y \): strong \(J/\psi \) \(Q_{pA} \) decrease from low to high event activity.

backward-\(y \): \(Q_{pA} \) consistent with unity, with a feeble event activity dependence.
CNM EFFECTS FROM p-Pb TO Pb-Pb

- CNM effects evaluated from p-Pb data

Hypothesis:
- 2→1 kinematics for J/ψ production
- CNM effects (dominated by shadowing) factorize in p-A
- CNM evaluated as $R_{pA} \times R_{Ap} (R_{pA}^2)$, similar x-coverage as Pb-Pb

![Graph showing kinematics for J/ψ production and CNM effects](image)

- Sizeable p_T dependent suppression still visible
 → CNM effects not enough to explain AA data at high p_T
CNM EFFECTS FROM p-Pb TO Pb-Pb

CNM effects evaluated from p-Pb data

Hypothesis:

- 2→1 kinematics for J/ψ production
- CNM effects (dominated by shadowing) factorize in p-A
- CNM evaluated as $R_{pA} \times R_{Ap} (R_{pA}^2)$, similar x-coverage as Pb-Pb

Sizeable p_T dependent suppression still visible
- CNM effects not enough to explain AA data at high p_T
- From enhancement to suppression increasing p_T
- Hint for recombination
A strong decrease of the $\psi(2S)$ production in p-Pb, relative to J/ψ, is observed with respect to the pp measurement ($2.5<y_{\text{cms}}<4$, $\sqrt{s}=7\text{TeV}$)

Double ratio allows a direct comparison of the J/ψ and $\psi(2S)$ production yields between experiments

Similar effect seen by PHENIX in d-Au collisions, at mid-y, at $\sqrt{s_{\text{NN}}}=200\text{ GeV}$

$[\psi(2S)/J/\psi]_{\text{pp}}$ variation between ($\sqrt{s}=7\text{TeV}$, $2.5<y<4$) and ($\sqrt{s}=5.02\text{TeV}$, $2.03<y<3.53$ or $-4.46<y<-2.96$) based on CDF and LHCb data (\sim8% included in the systematic uncertainty)
\(\psi(2S) \) suppression stronger than the \(J/\psi \) one, reaching a factor \(\sim 2 \) wrt pp

same initial state CNM effects (shadowing & coherent energy loss) for both \(J/\psi \) and \(\psi(2S) \)

theoretical predictions in disagreement with \(\psi(2S) \) result
\(\psi(2S) \) \(R_{pA} \) VS RAPIDITY

\(\psi(2S) \) suppression stronger than the \(J/\psi \) one, reaching a factor \(~2\) wrt pp

Can the stronger \(\psi(2S) \) suppression be due to break-up of the fully formed resonance in CNM? Possible if formation \((\tau_f)\) < crossing time \((\tau_c)\)
\[\tau_f \sim 0.05 - 0.15 \text{fm/c} \]

\[\tau_c = \frac{\langle L \rangle}{\beta z \gamma} \]

forward-\(y \): \(\tau_c \sim 10^{-4} \text{ fm/c} \)
backward-\(y \): \(\tau_c \sim 10^{-1} \text{ fm/c} \)

forward-\(y \): break-up effects excluded

backward-\(y \): \(\tau_f \sim \tau_c \), hence break-up in CNM hardly explains the strong \(J/\psi \) and \(\psi(2S) \) difference

Graph:
- ALICE, p-Pb \(\sqrt{s_{NN}} = 5.02 \text{ TeV}, \) inclusive \(J/\psi, \psi(2S) \rightarrow \mu^+\mu^- \)
- \(\text{arXiv:1405.3796} \)
- Forward-\(y \): break-up effects excluded
- Backward-\(y \): \(\tau_f \sim \tau_c \), hence break-up in CNM hardly explains the strong \(J/\psi \) and \(\psi(2S) \) difference
Final state effects related to the (hadronic) medium created in the p-Pb collisions?

Charmonium interaction with comoving particles:

- Comovers dissociation affects more strongly the loosely bound $\psi(2S)$ than the J/ψ
- Comovers density larger at backward rapidity

$\psi(2S) R_{pA} \text{ vs RAPIDITY: COMOVERS?}$

E. Ferreiro arXiv:1411.0594
J/ψ and ψ(2S) Q_{pPb} vs Event Activity

Inclusive J/ψ, ψ(2S) → μ⁺μ⁻

- **p-Pb \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)**
 - 2.03 < \(y_{\text{cms}} \) < 3.53 (p-going direction)

Forward-\(y \): J/ψ and ψ(2S) show a similar decreasing pattern vs event activity.

Backward-\(y \): the J/ψ and ψ(2S) behaviour is different, with the ψ(2S) significantly more suppressed for largest event activity classes.

→ Another hint for ψ(2S) suppression in the (hadronic) medium?
\(\Upsilon(1S) \) production in p-Pb

\(\Upsilon(1S) \) measured at mid-\(y \) by CMS and at forward-\(y \) by both ALICE and LHCb

\(R_{pA} \) results within uncertainties (but LHCb systematically higher)

Hint for stronger suppression at forward-\(y \) (similarly to J/\(\psi \))

Theoretical calculations based on initial state effects seem not to describe simultaneously forward and backward \(y \)

ALICE: arXiv:1410.2234, accepted by PLB
LHCb: JHEP 07(2014)094

Massimiliano Marchisone - Friday 22
\(\Upsilon(nS)/\Upsilon(1S) \) PRODUCTION IN p-Pb

Initial state effects similar for the three \(\Upsilon \) states

p-Pb vs pp @mid-y: different/stronger final states effects in p-Pb affecting the excited states

p-Pb vs PbPb @mid-y: even stronger suppression of excited states in PbPb

ALICE (and LHCb) observes:

\(\Upsilon(2S)/\Upsilon(1S) \) (ALICE)

2.03 < \(y \) < 3.53: \(0.27 \pm 0.08 \pm 0.04 \)

-4.46 < \(y \) < -2.96: \(0.26 \pm 0.09 \pm 0.04 \)

Compatible with pp results 0.26±0.08 (ALICE, pp@7TeV)

CMS analyses the double ratio \([\Upsilon(2S)/\Upsilon(1S)]/[\Upsilon(nS)/\Upsilon(1S)]_{pp}\) and finds

0.83±0.05±0.05
Weaker dependence when the activity estimator is in a different kinematic region with respect to the γ.

Strong decrease with increasing charged particle multiplicity both in pp and p-Pb.

$\gamma(nS)/\gamma(1S)$ studied as a function of event activity.

$\gamma(1S)$ produced with more particles than excited states.

γ production affects multiplicity? or multiplicity affects the γ?

Weaker dependence when the activity estimator is in a different kinematic region with respect to the γ.

CMS pp $\sqrt{s} = 2.76$ TeV, CMS pPb $\sqrt{s_{NN}} = 5.02$ TeV.
Large wealth of quarkonium results at LHC complementing SPS and RHIC measurements!

Very interesting observations, qualitative understanding of the main quarkonium features in A-A:

- important role of charmonium (re)generation processes at low p_T
- bottomonium sequential suppression observed

In p-A collisions:

- an interplay of shadowing and coherent energy loss can satisfactorily describe the J/ψ results
- the loosely bound $\psi(2S)$ state is likely to be influenced by the hadronic final state
- $\Upsilon(1S)$ described within uncertainties by shadowing+energy loss
- also $\Upsilon(2S)$ and $\Upsilon(3S)$ are possibly influenced by the final state

Results from LHC Run2 eagerly awaited!
Strongly bound states have smaller sizes.

Debye screening condition $r_0 > \lambda_D$ will occur at different T.

Differences in the binding energies of the quarkonium states lead to a sequential melting of the states with increasing temperature.

<table>
<thead>
<tr>
<th>state</th>
<th>J/ψ</th>
<th>χc</th>
<th>ψ(2S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (GeV)</td>
<td>3.10</td>
<td>3.51</td>
<td>3.69</td>
</tr>
<tr>
<td>ΔE (GeV)</td>
<td>0.64</td>
<td>0.22</td>
<td>0.05</td>
</tr>
<tr>
<td>r_0 (fm)</td>
<td>0.50</td>
<td>0.72</td>
<td>0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>state</th>
<th>Y(1S)</th>
<th>Y(2S)</th>
<th>Y(3S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (GeV)</td>
<td>9.46</td>
<td>10.0</td>
<td>10.36</td>
</tr>
<tr>
<td>ΔE (GeV)</td>
<td>1.10</td>
<td>0.54</td>
<td>0.20</td>
</tr>
<tr>
<td>r_0 (fm)</td>
<td>0.28</td>
<td>0.56</td>
<td>0.78</td>
</tr>
</tbody>
</table>

(Digal, Petrecki, Satz PRD 64(2001) 0940150)
J/ψ R_{AA} VS CENTRALITY: THEORY COMPARISON

Comparison to theory calculations:

- Models including a large fraction (> 50% in central collisions) of J/ψ produced from (re)combination or models with all J/ψ produced at hadronization provide a reasonable description of ALICE results.

- Still rather large theory uncertainties: models will benefit from a precise measurement of \(\sigma_{cc}\) and from cold nuclear matter evaluation.
J/ψ R_{AA} VS TRANSVERSE MOMENTUM

J/ψ production via (re)combination should be more important at low transverse momentum p_T region accessible by ALICE

- Different suppression for low and high p_T J/ψ
- Striking difference between the PHENIX and ALICE patterns, in particular at low p_T and central collisions (where PHENIX suppression is 4 times larger)
J/ψ production via (re)combination should be more important at low transverse momentum.

p_T region accessible by ALICE.

Models with a large regeneration component (at low p_T) are in fair agreement with the data.

Multi-differential studies show that the difference low vs high p_T suppression is even more important for central collisions.
Muons need to overcome the magnetic field and energy loss in the absorber: minimum momentum $p \sim 3$-5 GeV/c to reach the muon stations.

- Limits J/ψ acceptance
 - mid-y: $p_T > 6.5$ GeV/c
 - forward y: $p_T > 3$ GeV/c

Opposite behavior when compared to low-p_T results.

- Suppression is stronger at LHC energy (by a factor ~ 3 compared to RHIC for central events).

Is the suppression for central events ($R_{AA} \sim 0.2$) compatible with a full suppression of all charmonia?
The contribution of J/ψ from (re)combination should lead to a significant elliptic flow signal at LHC energy.

STAR found v_2 consistent with 0.

ALICE measures v_2 (with a significance up to 3σ for chosen kinematic/centrality selections) in agreement with transport models including (re)combination.

CMS measures a significant v_2 in a region where (re)combination should be negligible → due to path-length dependence of J/ψ suppression.
Separation via secondary vertex identification exploiting the ALICE ITS capabilities

Fraction of b-hadron decays obtained down to $p_T^J/\psi = 2\text{GeV}/c$

...but for the moment ALICE R_{AA} results are for inclusive J/ψ
Comparison with CMS mid-rapidity results (PRL 109 (2012) 222301)

In most central collisions suppression seems stronger at forward rapidities

Stronger suppression at forward rapidity than at mid-rapidity
Comparison with Theory

- Evolving QGP described via a dynamical model including suppression of bottomonium states, but not CNM nor recombination.
- 2 different initial temperature y profiles: boost invariant or Gaussian (3 tested shear viscosity).

The model underestimates the measured $\Upsilon(1S)$ suppression at forward-y, while it is in fair agreement with mid-y data.
Comparison with Theory

- Transport model accounting for both regeneration and suppression
- CNM effects included via an effective absorption cross section (0-2 mb)

The measured R_{AA} vs centrality is slightly overestimated by the model at forward-y, while it reproduces CMS results. Constant R_{AA} behavior vs y is not supported by the data.
ALICE p-Pb collisions

Beam energy: $\sqrt{s_{NN}} = 5.02$ TeV
Energy asymmetry of the LHC beams ($E_p = 4$ TeV, $E_{Pb} = 1.58$ A·TeV) → rapidity shift $\Delta y = 0.465$ in the proton direction

Beam configurations:
Data collected with two beam configurations: p-Pb and Pb-p

Muon analysis
$2.03 < y_{CMS} < 3.53$

Pb

Electron analysis
$-1.37 < y_{CMS} < 0.43$

Pb

Data collected with two beam configurations: p-Pb and Pb-p

p
The sizeable $\psi(2S)$ statistics in p-Pb collisions allows the differential study of $\psi(2S)$ production vs p_T.

Different p_T correspond to different crossing times, with τ_c decreasing with increasing p_T.

backward-y: $\tau_c \sim 0.07$ ($p_T=0$) and ~ 0.03 fm/c ($p_T=8$ GeV/c).

if $\psi(2S)$ breaks up in CNM, the effect should be more important at backward-y and low p_T.

No clear p_T dependence is observed at $y<0$, within uncertainties.
• **Ferreiro et al. [EPJC 73 (2013) 2427]**
 - Generic 2→2 production model at LO
 - EPS09 shadowing parameterization at LO
 - Fair agreement with measured R_{pPb}
 • Although slightly overestimates it in the antishadowing region

• **Vogt [arXiv:1301.3395]**
 - CEM production model at NLO
 - EPS09 shadowing parameterization at NLO
 - Fair agreement with measured R_{pPb} within uncertainties
 • Although slightly overestimates it
$\frac{\Gamma(2S)/\Gamma(1S)}{\Gamma(3S)/\Gamma(1S)}$ vs Event Activity

Weak variation as a function of the forward transverse energy

Strong decrease with increasing charged particle multiplicity
\(\Upsilon(2S)/\Upsilon(1S) \) PRODUCTION IN P-Pb

Initial state effects similar for the three \(\Upsilon \) states

p-Pb vs pp @mid-y: different/stronger final states effects in p-Pb affecting the excited states

p-Pb vs PbPb @mid-y: even stronger suppression of excited states in PbPb

ALICE (and LHCb) observes:

\(\Upsilon(2S)/\Upsilon(1S) \) (ALICE)

2.03 < y < 3.53: 0.27±0.08±0.04

-4.46 < y < -2.96: 0.26±0.09±0.04

Compatible with pp results

0.26±0.08 (ALICE, pp@7TeV)