Quarkonium at RHIC

Grazyna Odyniec / LBNL
Theory: Quarkonia suppression

Charmonia \((c \bar{c})\): \(J/\psi, \psi', \chi_c\)
Bottomonia \((b \bar{b})\): \(\Upsilon (1S), \Upsilon (2S), \Upsilon (3S), \chi\)

Key idea (1986): quarkonia melt in plasma (T.Matsui, H.Satz)
- color screening of static potential between heavy quarks
- suppression of states determined by \(T_c\) and binding energy
- sequential melting of quarkonia: a thermometer of QGP

\(J/\psi\) suppression by quark-gluon plasma

T. Matsui
Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology

H. Satz\(a, b\)
\(a\) Fakultät für Physik, Universität Bielefeld, Bielefeld, Fed. Rep. Germany
\(b\) Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

Received 17 July 1986, Available online 15 October 2002.
http://dx.doi.org/10.1016/0370-2693(86)91404-8, How to Cite or Link Using DOI Permissions & Reprints

If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, it is expected that quarkonia, which are bound states of heavy quarks, will melt in the plasma. The melting of quarkonia can be used as a thermometer to measure the temperature of the quark-gluon plasma (QGP). The melting temperatures of various charmonia and bottomonia states are indicated by the color temperature scale. Below the critical temperature \(T_c\), the quarkonia are stable, while above \(T_c\), they begin to melt. The transition temperature \(T_m\) can be used to determine the temperature of the QGP. If the melting is observed, it can be used as an indicator of the QGP formation.

\(G.\text{Odyniec, IS 2014, Napa, Dec. 3-7, 2014}\)
Melting temperature?
(large effort from theoretical side to calibrate thermometer)

Compilation of expectations

bottom line: the most loosely bound states disappears first, the ground state last i.e. J/ψ should survive ψ'

To do: Implant quarkonia into the QGP and observed their modification, suppression or enhancement, with and without plasma formation in respect to reference

G. Odyniec, IS 2014, Napa, Dec. 3-7, 2014
... but quarkonia production is rather complex (many entangled effects):

Cold nuclear effects (CNM): pdf modification in nucleus (gluon saturation, Color Glass Condensate), initial state energy loss, nuclear absorption, Cronin effect,

Hot/dense medium effects: color screening, gluon dissociation, regeneration, feed-down, ...

→ requires several measurements (systems, energies, centralities) to isolate different effects.

at RHIC:

\[\Upsilon / J/\Psi \]

\begin{align*}
 & \text{p+p, } \sqrt{s} = 62, 200, 500 \text{ GeV, and } \Psi(2S) \\
 & \text{d+Au, } \sqrt{s} = 200 \text{ GeV} \\
 & \text{Au+Au, } \sqrt{s_{NN}} = 200, 62.4, 39 \text{ GeV} \\
 & \text{U+U, } \sqrt{s_{NN}} = 193 \text{ GeV}
\end{align*}

U+U - higher energy density
- test sequential melting
- constrain models

Upsilon - a cleaner probe
- negligible regeneration at RHIC energy
- less CNM effects

\[G. \text{Odyniec, IS 2014, Napa, Dec. 3-7, 2014 \quad 4} \]
Anomalous J/ψ suppression in In+In (circles) and Pb+Pb collisions (triangles) as a function of N_{part}

Up to $N_{\text{part}} \sim 200$: J/ψ (measured) is compatible with extrapolation from p+A
For $N_{\text{part}} > 200$ – anomalous suppression at the level of 20-30% and only in central Pb+Pb

Expectations from lattice calculations,
e.g. M.Asakawa, T.Hatsuda Phys.Rev.Lett.92 (2004) 012001. that J/ψ suppression does not occur until $T \sim 2T_c$ is compatible with this observation

$p+Pb$ data at 158 GeV was used to calculate the expected size of CNM effects on J/ψ production

arXiv:0907.3682, QM 2009
Quarkonia at RHIC: STAR and PHENIX experiments

\[J/\psi / \Upsilon \rightarrow e^+ e^- (\mu^+ \mu^-) \]

STAR

TPC + TOF + BEMC

- Central Arms measure electrons (RICH, EMCal, PC, DC, VTX)
- Forward arms measure muons (MuID, MuTr, FVTX)

\[|\eta| < 1, \ 0 < \phi < 2\pi \]

PHENIX

- Central Arms measure electrons (RICH, EMCal, PC, DC, VTX)
- Forward arms measure muons (MuID, MuTr, FVTX)

TPC: \(dE/dx \) PID, large acceptance, uniform in a wide energy range

TOF: PID using flight time (extends PID to low momenta)

BEMC: PID with \(E/p \) ratio, high \(p_t \) trigger

\[1.2 < |y| < 2.2 \]

\[y = |0.35| \]

G. Odyniec, IS 2014, Napa, Dec. 3-7, 2014
J/ψ

$p+p$

$Au+Au$

$U+U$
J/ψ in p+p at 200 GeV

Inclusive J/ψ spectra:

Data:
Reach: 0<p_t<14 GeV
Agreement between STAR and PHENIX

Models:
Prompt NLO CS+CO describes data for p_t>4 GeV/c
Prompt CEM describes data at high p_t
(over-predicts data at p_t ~ 3 GeV/c)
Direct NNLO*CS under-predicts high p_t part

J.P.Lansberg private communication
J/ψ in p+p 500 GeV

High precision measurement at new beam energy, up to $p_T = 20$ GeV/c
Constrain model parameters
(ψ(2S) / J/ψ) ratio in p+p at 500 GeV

First measurement at p+p at 500 GeV
No collision energy dependence observed
Consistent with previous measurements from other experiments
Constrain feed-down contribution to J/ψ production
Additional test for production mechanisms of charmonium

ψ(2S) in p+p 500 GeV

Also ψ′!
J/ψ and ψ’ suppression in d + Au

Suppression increases with increasing N_{coll}
ψ’ production is heavily suppressed in central d+Au collisions relative to J/ψ → ψ’ is more sensitive to the final state effects
(ψ’ binding energy is 12x smaller than J/ψ)

Nuclear crossing time at RHIC ~ 0.05 fm at mid-y while c̅c formation time ~ 0.15 fm → bound c̅c may cross nucleus as a pre-resonant state → J/ψ and ψ’ should have the same level of suppression → data shows something else!
(similar result seen at LHC)

Other process occurring on the time scale of c̅c formation that differently suppresses J/ψ and ψ’?
$R_{dAu}^{J/\psi}$ vs p_t

$R_{dAu} \sim 1$ at high p_t – CNM effects are small at high p_t

High p_t J/ψ carry cleaner signal with less CNM influence

R_{dAu} consistent with model calculations

shadowing from EPS09 nPDF, nuclear absorption $\sigma_{abs}^{J/\psi} \sim 3$mb

High-p_T J/ψ suppression in central collision

Suppression increases with collision centrality

$R_{AA}^{J/\psi}$ for high p_t is systematically higher than for low p_t

may indicate color screening

presence of QGP

low p_t - both models agree with data (green lines)

high p_t - good agreement with Liu et al.,

Zhao and Rapp model underpredicts measured R_{AA} (blue lines)

$R_{AA}^{J/\psi} \text{ in } Au+Au \text{ 200 GeV (high } p_t \text{ } J/\psi)$

- i.e. almost NOT effected by recombination and CNM effects

J/ψ in Au+Au at 200 GeV: two surprises

1: \(R_{\text{AA}}^{\text{RHIC}}(\text{mid-y}) \approx R_{\text{SPS}}^{\text{PbPb}} \)

![Graph showing comparison between RHIC and SPS data](image)

At mid-y \(R_{\text{AA}} \) looks similar, while there are obvious differences:
- at a given \(N_{\text{part}} \), at RHIC much higher energy densities…
- cold nuclear matter effects should be drastically different (\(x_{\text{Bjorken}}, \sigma_{\text{abs}} \)…)
- …

2: \(R_{\text{AA}}^{\text{forward}} < R_{\text{AA}}^{\text{mid-y}} \)

![Graph showing forward vs mid-y comparison](image)

Expectation from color screening:
\(R_{\text{AA}}(\text{mid-y}) < R_{\text{AA}}(\text{forward y}) \)

clearly data shows something else!
\(R_{\text{AA}}(\text{mid-y}) > R_{\text{AA}}(\text{forward y}) \)
Possible explanations …

- Regeneration models
 - give enhancement that compensate screening, initially uncorrelated c and \(\bar{c} \) can recombine (\(N_{cc} \sim 12 \) in most central collisions)
 - qualitative explanation: less suppression in y-mid because there is more c and \(\bar{c} \) to recombine

- Cold nuclear matter effects (CNM)
 - in any case are always present

- Sequential suppression
 - QGP screening only of \(\chi_c \) and \(\psi' \) removing their feed-down contributions to \(J/\psi \)

Presently one can not exclude/favor one or other of the above scenarios!

\[\bar{c} \text{ and } c \text{ to recombine} \]

\[J/\psi \]

\[L. \text{Grandchamp and R. Rapp, } \]
\[\text{Nucl. Phys. A 709, 415 (2002)} \]
Significant suppression of J/ψ production observed for all energies (200, 62.4 and 39 GeV) in respect to N_{coll} scaled with p+p yields. Consistent with suppression of directly produced J/ψ.

No significant energy dependence for R_{AA}

Two-component model (color screening, direct suppression + statistical regeneration) calculations consistent with data

R_{AA} increases from low p_t to high p_t, similar trend in 39, 62.4 and 200 GeV data
the “same” in the forward direction:

$$R_{\text{CP}}, R_{\text{AA}} \quad J/\psi \rightarrow \mu\mu, \quad 1.2 < |y| < 2.2$$

Similarity of J/ψ nuclear modifications

R_{CP} and R_{AA} from 39 to 200 GeV is a challenge for models

Model includes CNM effects, regeneration and QGP suppression for J/ψ forward rapidity is consistent with data

Does coalescence compensate for melting?

Needs reference p+p data!

p+p reference data determine taken from ISR, Fermilab and CEM

G. Odyniec, IS 2014, Napa, Dec. 3-7, 2014
\(J/\psi \) does not flow

\(J/\psi \) does not flow consistent with 0 in \(p_t \) range of 2 to 8 GeV/c for all centralities

Disfavors \(J/\psi \) coalescence from thermalized charm quarks at RHIC

\(J/\psi \) is the ONLY hadron so far that does not flow!
Why J/ψ in U+U 193 GeV so interesting?

1. **Higher energy density** in U+U collisions (~ 20%)

 - Tip-to-tip collision provides the highest energy density

 - Oblate vs. Prolate collisions

 - Higher energy density in U+U collisions

2. **Higher N_{part}**

 - It should be a good test for sequential suppression model …
 - greater suppression due to color screening
 - N_{coll} increases \rightarrow N_{charm} increases \rightarrow greater probability for regeneration

Kikola, Odyniec, Vogt, Phys. Rev. C 84, 054907
J/ψ in U+U 193 GeV

Similar suppression pattern in U+U as that in Au+Au 200 GeV

Baseline: J/ψ measurements in p+p 200 GeV

G.Odyniec, IS 2014, Napa, Dec. 3-7, 2014
System size?

Not much net effect from system size increase.
Upsilon

a cleaner (compare to J/ψ) probe:
- co-mover absorption negligible
- recombination negligible
- $\sim 12 \text{ cc}$ and $\sim 0.07 \text{ bb}$ pairs per central Au+Au collision at 200 GeV

but, rare probe, low rate …
Upsilon in \(p+p \) and \(d+Au \) 200 GeV

STAR

PHENIX

Upsilon suppression in \(d+Au \) !

G.Odyniec, IS 2014, Napa, Dec. 3-7, 2014
Upsilon rapidity dependence in $p+p$ and $d+Au$ 200 GeV

Υ cross section in $p+p$ vs rapidity consistent with NLO pQCD CEM predictions across all y in $d+Au$ also, except $y\sim 0$

R_{dAu} consistent with predictions except mid-rapidity -> indication of additional suppression at $y \sim 0$ beyond that of current models (i.e. in addition to shadowing and initial state parton energy loss)

- requires further studies $\rightarrow p+A$ run
Upsilon in U+U 193 GeV

Consistent increase of suppression with centrality in both Au+Au and U+U

Strong suppression in central collisions. Trend in U+U follows and extends trend in Au+Au

Agreement with models that include presence of QGP. Strickland model predicts temperature range:

\[428 \text{ MeV} < T < 442 \text{ MeV} \]
Suppression of \(\Upsilon(1S) \) in central collisions consistent with model calculations

- **Liu et al. Model** – suppression mostly due to dissociation of the excited states (CNM effects not included)

- **Strickland-Bazow Model** – hot and cold nuclear effects

No suppression: \(R_{AA}^{\Upsilon(1S)} \approx 1 \) in dAu, in peripheral and mid-central AuAu collisions

Indication of complete melting of \(\Upsilon(2S) \) and \(\Upsilon(3S) \) suppression in central collisions, consistent with predictions for central Au+Au

Suppression of \(\Upsilon(1S) \) similar to high-\(p_T \) \(J/\psi \)

\(\Upsilon \) suppression pattern supports sequential melting

G. Odyniec, IS 2014, Napa, Dec. 3-7, 2014
ΥR_{AA} at RHIC and LHC

Agreement between RHIC experiments
Larger suppression at CERN LHC energies, however at most central collisions comparable Υ suppression indicates color deconfinement
however, uncertainties are substantial
Where we are:

- Significant suppression of J/ψ production in central Au+Au from 39 to 200 GeV with respect to N_{coll} scaled p+p yields

- This J/ψ suppression similar in Au+Au at 200, 62.4 and 39 GeV

 Does recombination compensate fully for melting?

- Indications of no system size dependence of J/ψ suppression (similar in Au+Au and U+U)

- No collective behavior of J/ψ observed – thermalizes $c\bar{c}$ coalescence unlikely

- d+Au – hint of “additional” suppression (beyond model calculations)

 Some final state effects (even in such a small system) ?

- $\Upsilon(2S)$ and $\Upsilon(3S)$ suppression stronger than $\Upsilon(1S)$ in central collisions

 Signal of deconfined medium ?

- first ψ' measurements
Near future

Very soon – detailed quarkonium measurements

In STAR (fully installed and taking data in 2014):

HFT – separation of prompt and non-prompt J/ψ

MTD - J/ψ, $\Upsilon \rightarrow \mu^+\mu^-$ (compliment to e+e-)

In PHENIX:

VTX, FVTX –

nuclear modification and collective flow

of charm and bottom separately using DCA

G.Odyniec, IS 2014, Napa, Dec. 3-7, 2014
Thank you!
Suppression increases with increasing N_{coll}.

ψ' production is heavily suppressed in central $d+Au$ collisions relative to J/ψ. ψ' is more sensitive to the final state effects (ψ' binding energy is 12x smaller than J/ψ).
CNM effects, Υ in d+Au 200 GeV,

Similar suppression seen at E772

Suppression increases with the size of the system

G. Odyniec, IS 2014, Napa, Dec. 3-7, 2014
Energy dependence of J/ψ R_{cp}

RHIC BES program – a unique tool to study the interplay of J/ψ direct production (with color screening), CNM effects and recombination with changing energy.

Nuclear modification factor R_{cp} shows significant suppression in central Au + Au collisions at 62.4 GeV, similar as at 200 GeV.

Note, at 39 GeV large error bars.

G.Odyniec, IS 2014, Napa, Dec. 3-7, 2014