Ghosts in non-equilibrium QGP

Alina Czajka

Institute of Physics UJK, Kielce, Poland

in collaboration with St. Mrówczyński

A. Czajka & St. Mrówczyński, Phys. Rev. D **89**, 085035 (2014) arXiv: 1401.5773

A. Czajka, IS2014, December 5th, 2014

Outline

- 1. Motivation
- 2. Keldysh-Schwinger formalism
- 3. Generating functional
- 4. Slavnov-Taylor identities
- 5. Green's functions of ghosts
- 6. Application polarization tensor
- 7. Conclusions

Motivation

 \triangleright QCD computations in covariant gauges are usually much simpler than those in physical ones like the Coulomb gauge.

 \triangleright Covariant gauges require ghosts to compenasate unphysical degrees of freedom.

How to introduce ghosts in the Keldysh-Schwinger formalism?

What is the Green's function of free ghosts?

Keldysh–Schwinger formalism

Description of non-equilibrium many-body systems

Contour Green function of gauge field

$$
i\mathcal{D}^{\mu\nu}_{ab}(x, y) = \langle \widetilde{T} A^\mu_a(x) A^\nu_b(y) \rangle
$$

$$
\langle \ldots \rangle = \operatorname{Tr}[\hat{\rho}(t_0) \ldots]
$$

 \widetilde{T} $\,$ - ordering along the contour

 $(x)B(y) = \Theta(x_0, y_0)A(x)B(y) \pm \Theta(y_0, x_0)B(y)A(x)$ _
ก $\widetilde{T}A(x)B(y) = \Theta(x_0, y_0)A(x)B(y) \pm \Theta(y_0, x_0)B(y)A(x)$

A. Czajka, IS2014, December 5th, 2014

Keldysh–Schwinger formalism

Contour Green's function includes 4 Green's functions with real time arguments:

A. Czajka, IS2014, December 5th, 2014 5

Retarded, advanced & symmetric Green's functions

$$
\boxed{\mathcal{D}^+(x,y)} = \Theta(x_0 - y_0) \big(\mathcal{D}^>(x,y) - \mathcal{D}^<(x,y) \big)
$$

$$
\boxed{\mathcal{D}^-(x,y)} = \Theta(y_0 - x_0) \Big(\mathcal{D}^< (x,y) - \mathcal{D}^>(x,y) \Big)
$$

$$
\boxed{\mathcal{D}^{sym}(x,y)} = \mathcal{D}^{>}(x,y) + \mathcal{D}^{<}(x,y)
$$

Meaning of the functions

$$
D^{<,>}(x,y) \longrightarrow \text{mass-shell constraint}
$$

- **phase-space density**
-
- **real particles**

$$
\mathcal{D}^{\pm}(x,y) \qquad \text{\tiny\rm\AA\,non}
$$

- **retarded & advanced propagator**
- **no mass-shell constraint**
- **virtual particles**

Meaning of the functions

The Green's functions $\mathcal{D}(x, y)$ are gauge dependent

Physical results obtained from Green's functions must be gauge independent

For example

The poles of $\mathcal{D}(x,y)$ - disperssion relations – are gauge independent

Green's functions of free gluon field

$$
D(x, y) = D(x - y)
$$
 Feynman gauge

$$
D^{>}(p) = \frac{i\pi}{E_p} g_{\mu\nu} \delta^{ab} \Big[\delta(E_p - p_0) [n_g(\mathbf{p}) + 1] + \delta(E_p + p_0) n_g(-\mathbf{p}) \Big]
$$

$$
D^{<}(p) = \frac{i\pi}{E_p} g_{\mu\nu} \delta^{ab} \Big[\delta(E_p - p_0) n_g(\mathbf{p}) + \delta(E_p + p_0) [n_g(-\mathbf{p}) + 1] \Big]
$$

$$
D^{c}(p) = -g_{\mu\nu}\delta^{ab} \left[\frac{1}{p^{2} + i0^{+}} - \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0})n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0})n_{g}(-\mathbf{p}) \right) \right]
$$

$$
D^{a}(p) = g_{\mu\nu}\delta^{ab} \left[\frac{1}{p^{2} - i0^{+}} + \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0})n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0})n_{g}(-\mathbf{p}) \right) \right]
$$

 $n_g(\mathbf{p})$ - gluon distribution function

A. Czajka, IS2014, December 5th, 2014 99

Green's functions of free ghosts

How to get Green's function of free ghosts?

Ghost sector should be determined by the gauge symmetry of the theory!

$$
A_\mu^a \to \left(A_\mu^a\right)^{\!\!U} = A_\mu^a + f^{abc}\omega^b A_\mu^c - \frac{1}{g}\partial_\mu\omega^a
$$

gauge symmetry of the theory

Slavnov-Taylor identities

Generating functional

$$
W_0[J, \chi, \chi^*] = N_0 \int_{BC} DA \, DC \, DC \, * \, e^{i \int_C d^4 x \, \mathcal{L}_{eff}(x)}
$$
\n
$$
\text{boundary conditions:}
$$
\n
$$
\text{the Gible we } G \text{ is } t = \mathcal{L} + i0^+
$$

the fields are fixed in $t = -\infty \pm i0^+$

Lagrangian:

$$
\mathcal{L}_{\text{eff}}(x) = -\frac{1}{4} F_a^{\mu\nu} F_{\mu\nu}^a + \overline{\psi} (i\gamma_\mu D^\mu - m)\psi - \frac{1}{2\alpha} (\partial^\mu A_\mu^a)^2
$$

$$
- c_a^* (\partial^\mu \partial_\mu \delta_{ab} - g \partial^\mu f^{abc} A_\mu^c) c_b + J_\mu^a A_a^\mu + \chi_a^* c_a + \chi_a c_a^*
$$

$$
[W[J, \chi, \chi^*] = N \int DA' \ D C' \ D C^{*'} \ D A'' \ D C'' \ D C^{*''}
$$

$$
\times \rho[A', c', c^{*'}] A'', c'', c^{*''}] W_0[J, \chi, \chi^*]
$$

density matrix

A. Czajka, IS2014, December 5th, 2014 12

Generating functional

$$
W[J, \chi, \chi^*] = N \int DA^*DC^*DC^{**}DA^*DC^*DC^{**}
$$

$$
\times \rho[A', c', c^{**}] A'', c'', c^{***}] W_0[J, \chi, \chi^*]
$$

The full Green's function can be generated through

$$
i\mathcal{D}^{ab}_{\mu\nu}(x,y) = (-i)^2 \frac{\delta^2}{\delta J^a_{\mu}(x)\delta J^b_{\nu}(y)} W[J,\chi,\chi^*]\Big|_{J=\chi=\chi^*=0}
$$

density matrix $\rho[A', c', c^{*'}| A'', c'', c^{*''}]$ is not specified

the explicit form of the functional and the Green's function cannot be found

The functional provides various relations among Green's functions.

General Slavnov-Taylor identity $=N\int_{BC} DA \Delta[A]e^{i\int_C d^4x \mathcal{L}(x)}$ $i \int_C d^4x \, \mathcal{L}(x)$ *BC* $W[J, \gamma, \gamma^*] = N \left| \right.$ $DA \Delta[A]e^{i(c^{a} \lambda^* \mathcal{L}(\lambda))}$ $[J, \chi, \chi^*] = N \int_{\mathbb{R}^d} \mathcal{D}A \, \Delta[A] e^{i \int_C d^4 x \, \mathcal{L}(x)}$ analog of the Fadeev-Popov determinant $\Delta[A]\equiv \int\mathcal{D}c\mathcal{D}c\,{{*}}\,e^{-i\int_{C}d^4x\left(-c^*_a(\partial^\mu\partial_{\mu}\delta_{ab}-g\partial^\mu f^{abc}A^c_\mu)c_b+\chi^*_ac_a+\chi_ac^*_a\right)}$ $\int_{BC} \!\!\!\!\! Dc \mathcal{D}c \, {}^*\!e^{-i\int_C \!d^{\ast}x \left(-c_a^{\ast}(\partial^{\mu}\partial_{\mu}\delta_{ab}-g\partial^{\mu}f^{abc}A^c_{\mu})c_b+\chi_a c_a+\chi_a c_a^{\ast}\right)} \nonumber$ $\int_C a^a \lambda \left(-c_a (b^c \theta_a + b^c \theta_a) - b^c \theta_a \right) d\theta$ $a^4 \left[d^4x \left(-c_a^* (\partial^\mu \partial_\mu \delta_{ab} - g \partial^\mu f^{abc} A^c_\mu) c_b + \chi^*_a c_a + \chi_a c_a^* \right) \right]$ *BC* $A \equiv \left(\mathcal{D}c \mathcal{D}c^* e^{-\int c} \right)$ $[A] \equiv \int \! D c \! \, \! D c \! \! \cdot \! k \, e^{-i \int_C \! d^4x \left(- c_a^* (\partial^\mu \partial_\mu \delta_{ab} - g \partial^\mu f^{abc} A_\mu^c) c_b + \chi_a^* c_a + \chi_a c_a^* \right)} \, .$ μ ab δ σ J μ μ_{λ} S $\alpha \lambda^{\mu}$ f^{abc} $DcDc * e^{-\int_{c}^{c} \cdots (-a)^{c-a}}$

The invariance of $W[J,\chi,\chi^*]$ under the transformations

$$
A_\mu^a \to \left(A_\mu^a\right)^{\!\!U} = A_\mu^a + f^{abc}\omega^b A_\mu^c - \frac{1}{g} \partial_{\mu}\omega^a
$$

leads to

$$
\left\{ i \partial_{(y)}^{\mu} \frac{\delta}{\delta J_d^{\mu}(y)} - \int_C d^4 x \, J_a^{\mu}(x) \left(\partial_{\mu}^{(x)} \delta^{ab} + ig f^{abc} \frac{\delta}{\delta J_c^{\mu}(x)} \right) M_{bd}^{-1} \left[\frac{1}{i} \frac{\delta}{\delta J} \middle| x, y \right] \right\} W[J, \chi, \chi^*] = 0 \right\}
$$

Slavnov-Taylor identity for gluon Green's function

$$
\frac{\delta}{\delta J_{e}^{V}(z)}\left\{ i\partial_{(y)}^{\mu}\frac{\delta}{\delta J_{d}^{\mu}(y)} - \int_{C} d^{4}x \, J_{a}^{\mu}(x) \left(\partial_{\mu}^{(x)}\delta^{ab} + igf^{abc}\frac{\delta}{\delta J_{c}^{\mu}(x)}\right) M_{bd}^{-1} \left[\frac{1}{i}\frac{\delta}{\delta J}\bigg| x, y\right]\right\} W[J, \chi, \chi^{*}] = 0
$$

$$
J=\chi=\chi^*=0
$$

$$
-p^{\mu} \mathcal{D}^{ab}_{\mu\nu}(p) = p_{\nu} \Delta_{ab}(-p)
$$

free ghosts Green's function

The longitudinal component of the gluon Green's function is free.

A. Czajka, IS2014, December 5th, 2014 15

Ghost functions

$$
-p^{\mu}D_{\mu\nu}^{ab}(p) = p_{\nu}\Delta_{ab}(-p)
$$

$$
\Delta^>(p) = -\frac{i\pi}{E_p} \delta^{ab} \Big[\delta(E_p - p_0) [n_g(\mathbf{p}) + 1] + \delta(E_p + p_0) n_g(-\mathbf{p}) \Big]
$$

$$
\Delta^<(p) = -\frac{i\pi}{E_p} \delta^{ab} \Big[\delta(E_p - p_0) n_g(\mathbf{p}) + \delta(E_p + p_0) [n_g(-\mathbf{p}) + 1] \Big]
$$

$$
\Delta^{c}(p) = \delta^{ab} \left[\frac{1}{p^{2} + i0^{+}} - \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0}) n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0}) n_{g}(-\mathbf{p}) \right) \right]
$$

$$
\Delta^{a}(p) = -\delta^{ab} \left[\frac{1}{p^{2} - i0^{+}} + \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0}) n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0}) n_{g}(-\mathbf{p}) \right) \right]
$$

 n_g (**p**) - gluon distribution function

A. Czajka, IS2014, December 5th, 2014 16

Application - polarization tensor

The poles of $\mathcal{D}(x,y)$ give disperssion relations of quasiparticles

Dyson – Schwinger equation

 $D = D - D \Pi D$

 $D^{-1} = D^{-1} + \Pi$

To get disperssion relations one needs the polarization tensor

Contributions to polarization tensor

quark-loop contribution to contour polarization tensor

 $S(x, y)$ - fermion contour Green's function

Hard Loop Approximation

Wavelength of a quasi-particle is much bigger than inter-particle distance in the plasma:

Polarization tensor

$$
\Pi_{ab}^{\mu\nu}(k) = g^2 \delta_{ab} \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p}) k^2 p^{\mu} p^{\nu} - [p^{\mu} k^{\nu} + k^{\mu} p^{\nu} - g^{\mu\nu} (k \cdot p)](k \cdot p)}{(k \cdot p + i0^{\ast})^2}
$$
\n
$$
\begin{array}{c}\n\text{distribution function} \\
\boxed{f(\mathbf{p}) \equiv 2N_c n_g(\mathbf{p}) + n_q(\mathbf{p}) + \overline{n}_q(\mathbf{p})} \\
\text{(vacuum effect is subtracted)}\n\end{array}
$$
\n
$$
\text{ymmetric} \quad \frac{\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k)}{k_{\mu} \Pi^{\mu\nu}(k) = 0} \quad \text{Gauge} \\
\text{massersal} \quad k_{\mu} \Pi^{\mu\nu}(k) = 0 \quad \text{independence!} \\
\text{Ghosts work properly!}
$$
\n
$$
A. Czajka, IS2014, December gth, 2014} \quad 20
$$

distribution function

 $\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k)$

$$
f(\mathbf{p}) \equiv 2N_c n_g(\mathbf{p}) + n_q(\mathbf{p}) + \overline{n}_q(\mathbf{p})
$$

(vacuum effect is subtracted)

 symmetric

 transversal

$$
k_{\mu}\Pi^{\mu\nu}(k) = 0
$$

Gauge independence!

Ghosts work properly!

Conclusions

- The generating functional of QCD in the Keldysh-Schwinger formalism was constructed.
- \triangleright The general Slavnov-Taylor identity was derived.
- \triangleright The ghost Green's function was expressed through the gluon one.
- \triangleright The computed polarization tensor in the hard loop approximation is automatically transverse.
- **QCD calculations in Keldysh-Schwinger formalism are possible in the Feynman gauge.**