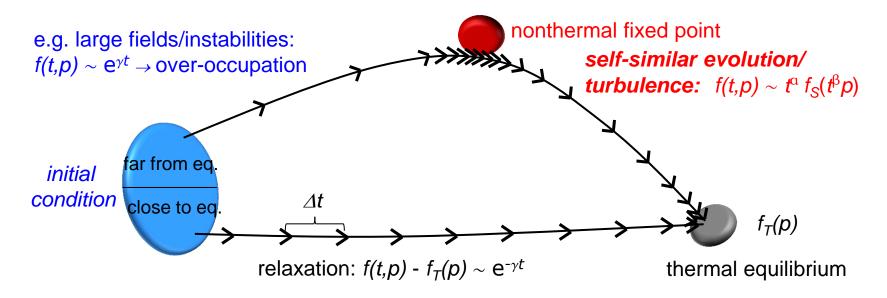
Thermalization process in ultra-relativistic heavy-ion collisions

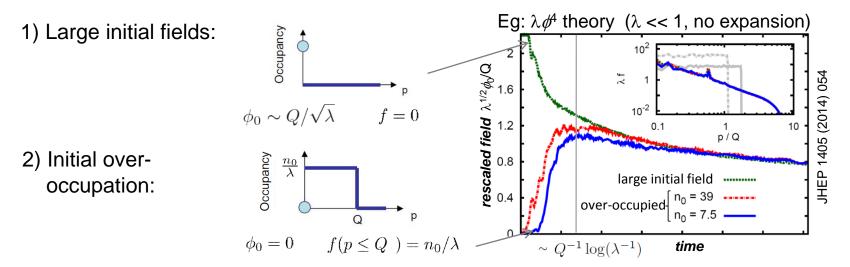
Jürgen Berges Heidelberg University

Kirill Boguslavski, Sören Schlichting, Raju Venugopalan arXiv:1408.1670 & PRD 89 (2014) 074011 & 114007

Far-from-equilibrium vs. close-to-equilibrium dynamics

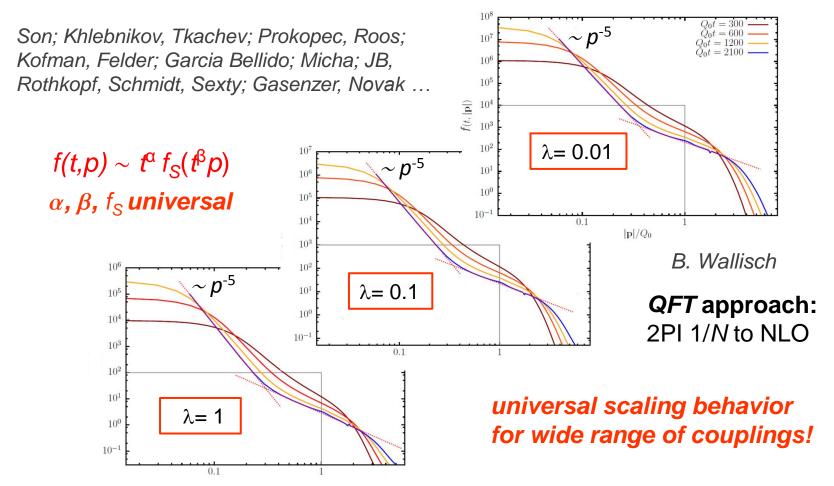


Far-from-equilibrium: Rapid loss of initial condition details / universality



Universal scaling dynamics

E.g. *N*-component $\lambda \phi$ theory (no expansion):

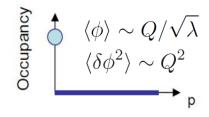


Suitable resummation techniques for scalar quantum theories exist beyond the weak coupling limit – but much more difficult for gauge theories!

Classical-statistical lattice simulations

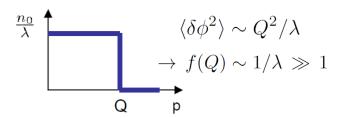
Weak-coupling dynamics of large fields/high occupancies can be accurately mapped onto classical-statistical theory, which is simulated on a lattice

Two-step mapping: $\phi = \phi_0 + \delta \phi$



- $f(Q) \sim e^{\gamma_Q \Delta t}$ $\xrightarrow{\Delta t \sim Q^{-1} \log \lambda^{-1}}$ $\xrightarrow{\text{instability}}$
- 1. Large field: *linear regime* in $\delta \phi$
- solve linearized e.o.m.
 - → well-defined continuum limit

Son (`96), Klebnikov, Tkachev (`96),...

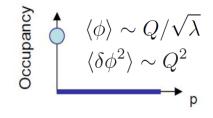


- 2. High occupancy: *non-linear regime*
 - finite if f(p) falls faster than p^{-1}
 - super-renormalizable if $f(p) \sim p^{-1}$ Aarts, Smit (`97)

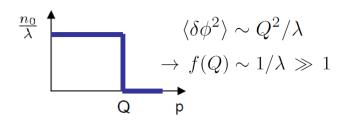
Classical-statistical lattice simulations

Weak-coupling dynamics of large fields/high occupancies can be accurately mapped onto classical-statistical theory, which is simulated on a lattice

Two-step mapping: $\phi = \phi_0 + \delta \phi$



- $f(Q) \sim e^{\gamma_Q \Delta t}$ $\Delta t \sim Q^{-1} \log \lambda^{-1}$ $\downarrow instability$
- Son (`96), Klebnikov, Tkachev (`96),...



- 1. Large field: *linear regime* in $\delta \phi$
- solve linearized e.o.m.
 - → well-defined continuum limit

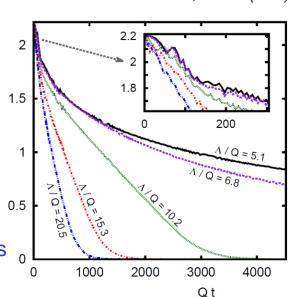
- 2. High occupancy: *non-linear regime*
 - finite if f(p) falls faster than p^{-1}
 - super-renormalizable if $f(p) \sim p^{-1}$ Aarts, Smit (`97)

If replaced by non-linear theory from t=0 for finite UV cutoff $\Lambda >> Q$, then only accurate for small λ & times

 \rightarrow explains conflicting scalar results from Epelbaum et al. for λ = 1 (*NPA 872 (2011) 210,...*):

JB, Boguslavski, Schlichting, Venugopalan, JHEP 1405 (2014) 054; Epelbaum, Gelis, Wu, PRD90 (2014) 065029

→ talk by T. Epelbaum for role of cutoff in their gauge results



Heavy-ion collisions in the high-energy limit

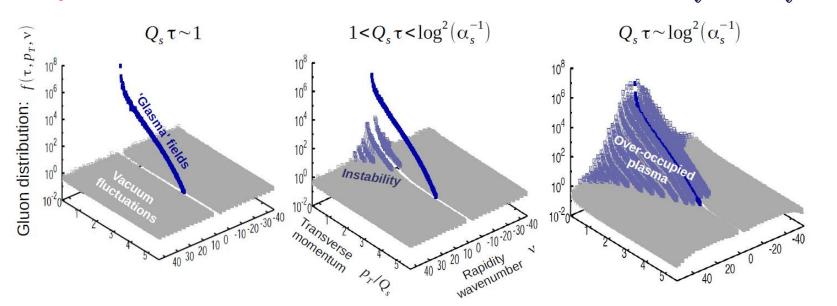
 $g\ll 1$

Large initial gauge fields: $\langle A \rangle \sim Q_s/g$

CGC: Lappi, McLerran, Dusling, Gelis, Venugopalan, Epelbaum...

Small initial (vacuum) fluctuations: $\langle \delta A^2 \rangle \sim Q_s^2$

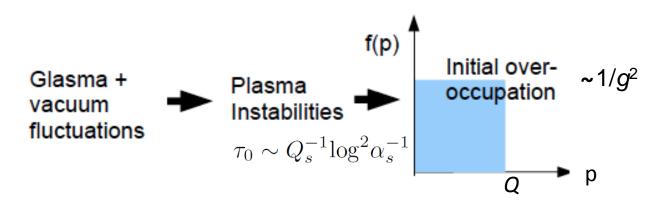
→ plasma instabilities



JB, Schenke, Schlichting, Venugopalan, arXiv:1409.1638 for initial spectrum from Epelbaum, Gelis, PRD88 (2013) 085015. Plasma instabilities from wide range of initial conditions:

Mrowczynski; Rebhan, Romatschke, Strickland; Arnold, Moore, Yaffe; Bödecker; Attems, ... Romatschke, Venugopalan; Berges, Scheffler, Schlichting, Sexty; Fukushima, Gelis ...

Initial conditions in the over-occupied QGP



• To see attractor: Initial over-occupation described by family of distributions at au_0

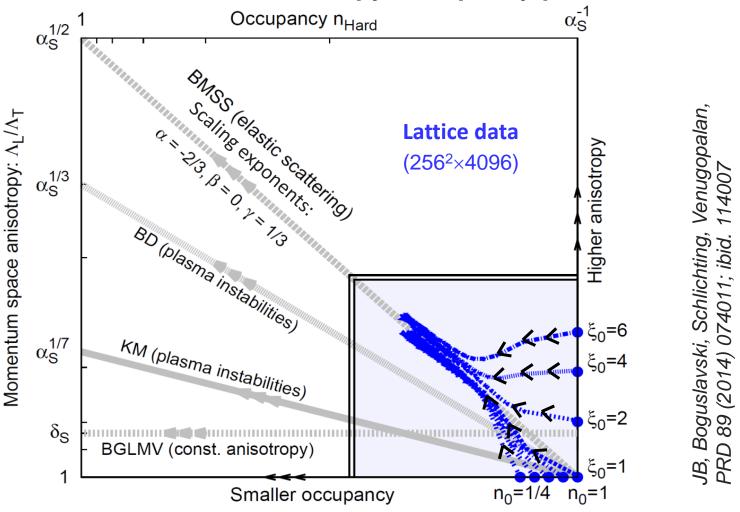
(Coulomb gauge) occupancy parameter
$$f(\mathbf{p_T},\mathbf{p_z},\tau_0) = \frac{n_0}{2g^2}\,\Theta\bigg(Q_{\rm S} - \sqrt{\mathbf{p_T^2} + (\xi_0\mathbf{p_z})^2}\bigg)$$

anisotropy parameter (controls "prolateness" or "oblateness" of initial momentum distribution)

• Computations performed at very weak coupling, as $\alpha_S = 10^{-5}$ for accurate description at all times in simulation corresponds to $Q\tau_0 \approx \log^2(1/\alpha_S) \approx 100$

Nonthermal fixed point

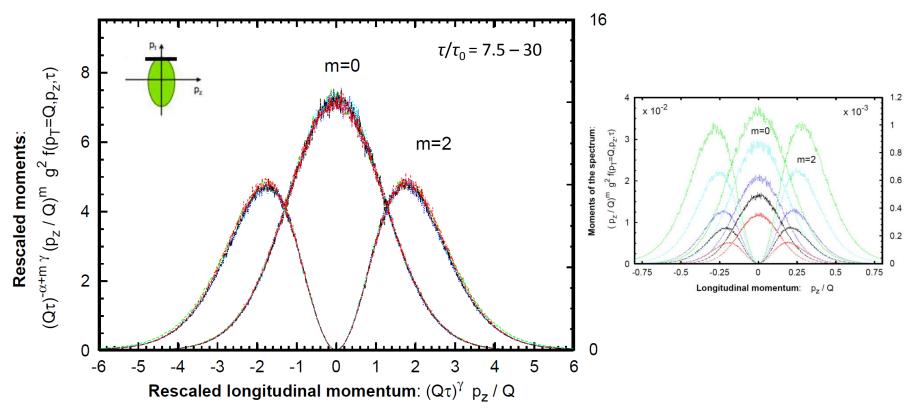
Evolution in the `anisotropy-occupancy plane'



`Bottom-up´* scaling emerges as a consequence of the fixed point!

*Baier et al, PLB 502 (2001) 51

Self-similar evolution



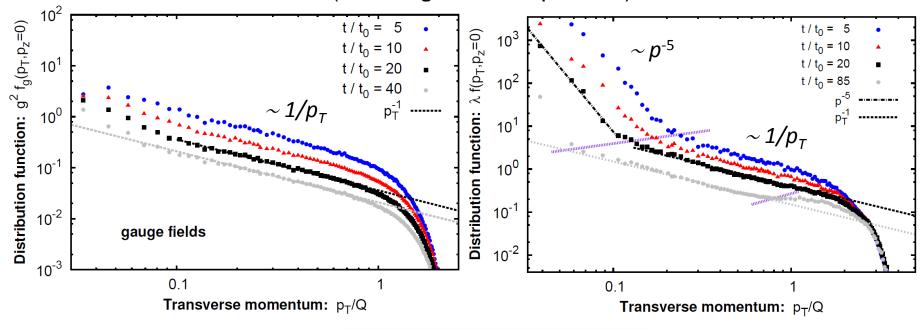
Scaling exponents: $\alpha = -2/3$, $\beta = 0$, $\gamma = 1/3$ and scaling distribution function f_s :

$$f(\mathbf{p}_{\mathrm{T}}, \mathbf{p}_{\mathrm{z}}, \tau) = (Q\tau)^{\alpha} f_{S} \Big((Q\tau)^{\beta} \mathbf{p}_{\mathrm{T}}, (Q\tau)^{\gamma} \mathbf{p}_{\mathrm{z}} \Big)$$

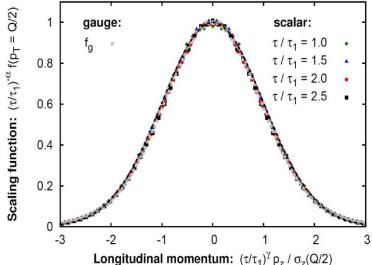
stationary fixed-point distribution

Comparing gauge and scalar field theories

(with longitudinal expansion)



Thermal-like transverse spectrum ~1/p_T even as longitudinal distribution is being `squeezed'

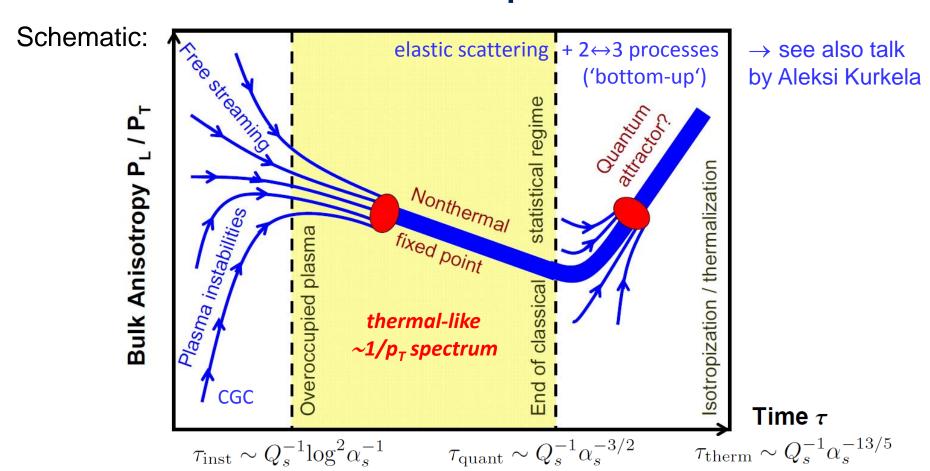


Agreement of α , β & scaling function f_s in inertial range $\sim 1/p_T$

→ universality far from equilibrium

JB, Boguslavski, Schlichting, Venugopalan, arXiv:1408.1670

Thermalization process

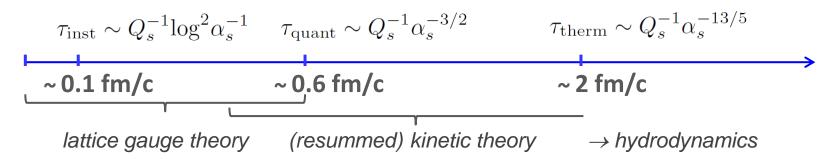


Extrapolation to realistic coupling $\alpha_s \sim 0.3$ for $Q_s \sim 2$ GeV:

$\tau_{\rm inst}$ ~ 0.1 fm/c	$ au_{quant}$ ~ 0.6 fm/c	$ au_{ m therm}$ ~ 2 fm/c
$P_L/P_T \sim 20-30\%$	$P_{L}/P_{T} \sim 10-20\%$	$P_L \sim P_T$

Conclusions

Entire thermalization process can be computed from interplay of methods



- Lattice theory & (resummed) kinetic theory have overlapping range of validity
 - → for the first time quantitative agreements on very large lattices
 - → self-similar attractor of longitudinally expanding plasma
- Early thermal-like transverse spectrum ~1/p_T even though the system is still far from equilibrium
- Universality of gauge & scalar dynamics in inertial range ~1/p_T
 - → points to general principle (not small angle scattering? vertex corrections?)