A Large Ion Collider Experiment

Measurement of low-mass dielectrons in p-Pb collisions with ALICE

Theo Bröker

ALICE | IS 2014 | 05.12.14 | Theo Bröker

Outline

- Introduction
- The ALICE detector
- Electron identification
- Signal extraction
- Hadronic cocktail
- Results
- Summary

pp collisions:

- vacuum reference
- Pb-Pb collisions:
- medium modifications of light mesons
- thermal radiation from hot medium
- heavy-flavor modification in the medium

p-Pb collisions:

- modifications from cold nuclear matter effects
 - initial state suppression of charm production
 - final state effects, energy loss
- thermal radiation in (high multiplicity) p-Pb?

Cold nuclear matter effects

- charm suppression expected in p-Pb α
 at low p_T by different models
- no strong conclusion from present D meson results
- open heavy-flavor dielectron results provide complementary measurement of charm suppression at low p_T due to sensitivity for very soft dielectrons (p_T^e > 0.2 GeV/c)

arXiv:1405.3452, submitted to PRL

The ALICE detector

- Inner Tracking System (ITS)
 - o tracking & vertexing
 - PID (dE/dx)
- Time Projection Chamber (TPC)
 - o tracking
 - PID (dE/dx)
- Time Of Flight (TOF)
 PID (hadron rejection)

 p-Pb: ≈ 106 million min. bias events at 5.02 TeV

Electron identification

- ITS
 - o select electrons
- **TPC**
 - o select electrons
 - o reject pions
- TOF

o reject hadrons, if TOF signal available

Signal extraction

- calculate all possible unlike-sign (ULS) pairs
 - ULS contains real signal, combinatorial and correlated background
- background estimation by like-sign (LS)
 - LS describes combinatorial and correlated background
- signal subtraction:
 - $S = ULS LS \times R$
- R: Acceptance correction factor for LS
 - R calculated from mixed events

Signal extraction

 signal to background ratio smaller in p-Pb than in pp

challenging analysis

Hadronic cocktail

known hadronic dielectron sources:

- π⁰ contribution based on charged pion ALICE measurement in p-Pb Phys. Lett. B 728 (2014) 25
- η , η ', ω , φ , ρ from m_T-scaling
- J/ψ based on pp calculations
 scaled to p-Pb measurements dx.doi.org/10.1016/j.nuclphysa.2014.09.062
- open heavy flavor based on pp expectations at 2.76 & 7 TeV scaled by <N_{coll}> = 6.9

Heavy flavor contribution

- heavy-flavor cocktail contribution
 based on measured cross
 section
- large uncertainty of ALICE result
- additional uncertainty from scaling to p-Pb energy

Invariant mass spectrum

- data comparison to known hadronic sources
- agreement of cocktail and data within uncertainties
- no hint for thermal contribution
- maybe hint for suppression in charm dominated mass region
- cocktail uncertainties do not allow for strong conclusion on CNM effects
- more checks in MC needed

Pair p_T spectrum in 0 < m_{ee} < 0.14 GeV/c²

- pair p_T spectrum dominated by π^0 contribution
- data in agreement with cocktail expectations

Pair p_T spectrum in 0.14 < m_{ee} < 0.75 GeV/ c^2

- mass region dominated by η-meson and open charm contribution
- no thermal enhancement at low p_T

Pair p_T spectrum in 0.75 < m_{ee} < 1.1 GeV/c²

- mass region of ω , ϕ dominated by open charm contribution
- data in agreement within cocktail uncertainties

Pair p_T spectrum in 1.1 < m_{ee} < 3 GeV/ c^2

- intermediate mass region dominated by open heavy flavor contribution
- data in agreement within cocktail uncertainties

Summary

- dielectrons are good probe to study CNM effects in p-Pb at low p_T
- p-Pb measurement in agreement with cocktail calculations within uncertainties
- no conclusion on possible charm suppression due to large uncertainties
 Outlook
- attempt to reduce uncertainties on cocktail
- alternatively data-driven approach by compairing p-Pb with scaled pp reference R_{pPb}(m_{ee})
- search for thermal radiation in high multiplicity p-Pb events
- possible charm suppression due to CNM effects would have important impact on Pb-Pb measurement
 ALICE | IS 2014 | 05.12.14 | Theo Bröker