Highlight of PHENIX Results

Shengli Huang
Vanderbilt University
Initial Stages 2014

Outline

- □ Long-range correlation, v_n and HBT in d+Au and 3 He+Au at 200GeV
- ■Photon measurements in 200GeV Au+Au
- ☐ Beam energy scan results
- ☐ Heavy quark and quarkonia
- **□**Summary

Long range correlation in d+Au

"Au-going" vs "d-going" arXiv:1404.7461 d+Au 0-5% d+Au 0-5% (BBC_Au) 1.03 1.03 1+Σ2c_ncos(nΔφ) 1.0<p_{T,trig}<3.0 GeV/c 1.02 1.02 η_{trig} l<0.35 1.01 1.01 1.00 1.00 0.99 **PH***ENIX 0.99 preliminary 0.98 Asso: Au-going, -3.7 < η <-3.1 Asso: d-going, 3.1< η <3.9 0.98 Δφ Δφ

C_2 in 0-5% d+Au collision

arXiv:1404.7461

Large η gap($|\Delta\eta| > 2.75$).

- In d+Au, the contribution from elementary processes estimated by pp is small
- Estimation is less sensitive to the final state interactions on jets

The v_2 of π and p in d+Au

Mass ordering for identified hadron is observed in both d+Au and p+Pb ---- consistent with hydrodynamic flow

Long range correlation in ³He+Au "Au-going" vs "³He-going"

Ridges are seen on both Au-going and ³He-going sides

The v_2 and v_3 in ${}^3He+Au$

J.Nagle et al, Phys. Rev. Lett. 113, 112301 (2014)

³He+Au (0-5%) N_{part} =25.0 ϵ_2 =0.504 ϵ_3 =0.283

d+Au (0-5%) N_{part} =17.8 ϵ_2 =0.540 ϵ_3 =0.190

The v_2 of ³He+Au is similar to that of d+Au

A clear v_3 signal is observed in 0-5% ³He+Au collisions

The HBT radii in d+Au

Rbar(initial transverse size): 1/Rbar=sqrt($1/\sigma_x^2 + 1/\sigma_y^2$)

- Linear dependence and good scaling from small (p/d+A) to bigger(A+A) collision systems, implying radial expansion in p/d+A collisions
- The different slopes between RHIC and LHC imply different expansion rates

Emission duration vs. collision energy

- A medium produced near CEP will show a stalling of expansion speed $^{\sim}(R_{\text{side}}-\sqrt{2}R_{\text{bar}})/R_{\text{long}}$ as well as a longer expansion time $\Delta \tau^2 \propto R_{\text{out}}^2-R_{\text{side}}^2$
- Non-monotonic behaviors are found for expansion time and expansion speed

N_{part} and N_{quark} Scaling

- Below 39 GeV, the dN/dη scales well with participant nucleons
- Above 39 GeV, participant quark scaling describes the data well.

Higher moments of net charge fluctuation

The correlation length (ξ) is related to various moments of conserved quantities:

```
Variance: \sigma^2 = \langle (N-\langle N \rangle)^2 \rangle \sim \xi^2

Skewness:S = \langle (N-\langle N \rangle)^3 \rangle / \sigma^3 \sim \xi^{4.5}

Kurtosis:\kappa = \langle (N-\langle N \rangle)^4 \rangle / \sigma^4 - 3 \sim \xi^7
```

The products of the net charge moments show no significant increase above URQMD, HIJING, or Hadron Resonance Gas predictions.

Direct photon at low p_T

New analysis using external conversion of real photon

Consistent with previous results from virtual photon

Extension to lower p_T

V₂ and v₃ of direct photon in 200GeV Au+Au

The direct photon v₂ has been measured with new external conversions methods

The model calculations under-predict our measurements

The new v₃
measurement will bring
more challenges to
theorists

With recent combined limits – WASA, HADES, A1, BaBar, PHENIX, NA48/2 – essentially all parameter space for the minimal version of a dark photon to explain (g-2)_µ anomaly has been ruled out

HF e in 62.4 GeV Au+Au

Rapp, Fries, He arXiv:1409.4539

HF electron R_{AA} >1 && v_2 >0 in 62.4GeV Au+Au collisions. The systematic uncertainties of R_{AA} are mainly from pp reference

Possible strong coupling nearer T_c drives interest in Au+Au and p+p at $\sqrt{s_{NN}}$ = 62.4 GeV for 2016 Run.

J/psi in Cu+Au collisions

- J/psi is more suppressed in Cu-going direction
- Trend is comparable with the calculations using EPS09

Upsilon in 200GeV Au+Au

Suppression of Upsilons at RHIC observed!

Consistent with disappearance of **2s** and **3s** contributions!

Within uncertainties similar to the suppression in Pb+Pb@CMS

Summary

- The ridge is observed in d+Au and ³He+Au. There is a clear v₃ signal in ³He+Au
- The v₃ of direct photon is seen in AuAu@200GeV
- Non-monotonic behaviors are found for expansion speed and time by HBT@collision energies
- The HF e R_{AA} >1 and v_2 >0 in 62.4GeV Au+Au collision. Improved measurements in the future will help us to address "possible strong coupling near T_c "

Backup

