Flow fluctuations versus Initial state fluctuations

IS2014, Dec. 4th, 2014

Jean-Yves Ollitrault, Institut de physique théorique, Saclay (France) http://ipht.cea.fr

Outline

- Selected experimental results on flow fluctuations.
- Are flow fluctuations simply related to initial state fluctuations?
- Recent progress since IS2013

Anisotropic flow

 Particles are emitted independently, with a *probability distribution* that is not isotropic in azimuthal angle

$$P(\phi) = \sum_{n} V_{n} \exp(-in\phi)$$

v_n=|V_n|=anisotropic flow
 v₂=elliptic flow
 v₃=triangular flow...

Flow fluctuations

- V_n fluctuates event to event.
- V₂ in nucleus-nucleus: mean V₂ from geometry
 + fluctuations
- V₃ in nucleus-nucleus,
 V₂ in proton-nucleus: just fluctuations

Δø

 Ψ_2

Moments and cumulants

- $v{2} = (\langle v^2 \rangle)^{1/2}$
- $v{4} = (2 < v^2 > 2 < v^4 >)^{1/4}$
- $v{6} \equiv ((\langle v^6 \rangle_9 \langle v^4 \rangle_{v^2} \rangle_{v^2} + |2 \langle v^2 \rangle_{v^3})/4)^{1/6}$
- If v does not fluctuate, $v{2}=v{4}=v{6}=v$
- In general v{4}<v{2}
- Event-plane method: $\langle v \rangle \langle v \{ EP \} \rangle \langle v \{ 2 \}$

Alver et al 0711.3724

v₂ fluctuations in Pb-Pb

For CMS, I use v_2 {EP} as an approximation for v_2 {2}: probably explains the small discrepancy

Gaussian fluctuations?

Voloshin et al. 0708.0800

- Gaussian (aka Bessel-Gaussian) flow fluctuations:
- V₂ in nucleus-nucleus:
 v₂{4}=v₂{6}=v₂{LYZ}=v₂ in reaction plane
- V₃ in nucleus-nucleus: $v_3{4}=0$ V₂ in proton-nucleus: $v_2{4}=0$

Are v₂ fluctuations Gaussian?

For ALICE and CMS, I assumed $v_2{6}=v_2{LYZ}$: Probably not good. Small non-Gaussianities seen by ATLAS. Larger for smaller systems.

Are v₃ fluctuations Gaussian?

All 3 experiments see $v_3{4} \neq 0$: non-Gaussian fluctuations clearly seen

v₂ fluctuations in p-Pb collisions

CMS 1305.0609

From initial state fluctuations to flow fluctuations

- Take a Monte-Carlo model of initial conditions
- Evolve using relativistic hydrodynamics
- Compute particle distribution
- Average over events

Paatelainen et al

Schenke et al

Bozek et al

Werner et al

The origin of anisotropic flow

Initial transverse density profile

Expansion

Final distribution

Initial anisotropies

= Fourier decomposition of the initial density profile $\rho(x,y)$

Schenke Tribedy Venugopalan 1202.6646

 $\epsilon_{n} \equiv \frac{\int r^{n} e^{in\phi} \rho(r,\phi) r dr d\phi}{\int r^{n} \rho(r,\phi) r dr d\phi}$

 $\epsilon_2 \equiv initial \ eccentricity$ $\epsilon_3 \equiv initial \ triangularity$

 $|\varepsilon_n| < I$ by definition

v_2 is strongly correlated with ε_2

linear (Pearson) correlation coefficient in event-by-event viscous hydro

Gardim Noronha-Hostler Luzum Grassi 1411.2574

v₃ is strongly correlated with E₃

linear (Pearson) correlation coefficient in event-by-event viscous hydro

 $v_n{4}/v_n{2} = \varepsilon_n{4}/\varepsilon_n{2}$

v_2 fluctuations vs ε_2 fluctuations

E2 fluctuations from Glauber: in the ballpark

v_2 fluctuations vs ε_2 fluctuations

Non-Gaussianities from Glauber: in the ballpark

V3 fluctuations vs **E3** fluctuations

Non-Gaussianities from Glauber: in the ballpark

A discussion at IS2013

- Non-Gaussian flow fluctuations are seen both in Pb-Pb (v₃) and in pPb (v₂)
- Similar non-Gaussianities are seen in initial state models
- Do we understand their origin?

Alver et al. <u>0711.3724</u> Bhalerao Luzum JYO <u>1107.5485</u>

Distribution of initial anisotropy

Is there a simple law that describes this distribution?

Gaussian?

Central limit theorem

$$P(\varepsilon_2) = 2(\varepsilon_2/\sigma^2) \exp(-\varepsilon_2^2/\sigma^2)$$

Not a good fit. Does not implement the condition $\epsilon_2 < 1$

New "Power" distribution

Li Yan, JYO, PRL 112 (2014) 082301

 $P(\epsilon_2) = 2\alpha\epsilon_2(1-\epsilon_2^2)^{\alpha-1}$

Equivalent to Gaussian for $\alpha >> 1$

Naturally implements the condition $\epsilon_2 < 1$.

5000 Power 4500 4000 3500 Nevents 3000 ε₂{2}=0.388 2500 p-Pb: N_p=15 2000 1500 1000 500 0 0.2 0 0.4 0.6 0.8 ²

Much better fit to Monte-Carlo results!

Predicts $\epsilon_2\{4\} > 0$

Natural explanation for $v_2{4}$ in pPb

Small system: large fluctuations: large $v_2{4}/v_2{2}$

Predictions: higher-order cumulants

Conclusions

- Direct evidence from experimental data that anisotropic flow in p-Pb and Pb-Pb collisions is driven by large anisotropies in the initial state: the statistics of \mathcal{E}_n hits the boundary $\mathcal{E}_n < I$
- The statistics of large fluctuations is not described by the central limit theorem but nevertheless universal to a good approximation.
- Flow fluctuations reflect to a large extent fluctuations in initial anisotropies. Corrections to this picture?

More in the next talk by Art Poskanzer

Perspectives

- Experiments: explore flow fluctuations through the double-differential structure of pair correlations Talks by Wei Li, Rajeev Bhalerao
- Hydro: do we understand the response to initial fluctuations beyond simple eccentricity scaling?
 More in the next talk by Art Poskanzer
- Initial state: understand on general grounds the initial anisotropies and their statistical properties.
 Talk by Jean-Paul Blaizot

Backup

Elliptic flow v₂ versus initial eccentricity ε₂

Each point=different initial density profile. v_2 is almost perfectly linear in ε_2

Triangular flow v₃ versus initial triangularity E₃

 v_3 is also strongly correlated with ε_3

Natural explanation for \mathcal{E}_{2} in pPb

Prediction of the power distribution

Each point: different number of hit nucleons in target

Each point: different number of hit nucleons in target

Each point: different centrality Pb-Pb: Larger system: smaller anisotropies

Each point: different centrality Pb-Pb: Larger system: smaller anisotropies

data from Avsar Flensburg Hatta JYO Ueda 1009.5643 Each point: different parton multiplicity

Higher-order cumulants (predicted by the power distribution)

E{n} quickly converges as order n increases