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Outline

• Selected experimental results on flow 
fluctuations. 

• Are flow fluctuations simply related to initial 
state fluctuations? 

• Recent progress since IS2013
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Anisotropic flow

• Particles are emitted independently, 
with a probability distribution that is not 
isotropic in azimuthal angle  
 
                 P(ϕ)= ∑n Vn exp(-inϕ)  

• vn≡|Vn|≡anisotropic flow  
v2≡elliptic flow  
v3≡triangular flow…
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Flow fluctuations

• Vn  fluctuates event to event. 

• V2 in nucleus-nucleus:  
    mean V2 from geometry  
+ fluctuations 

• V3 in nucleus-nucleus,  
V2 in proton-nucleus:  
just fluctuations
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Alver et al nucl-ex/0610037 
Alver Roland 1003.0194



Moments and cumulants
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• v{2}≡(<v2>)1/2

• v{4}≡(2<v2>2-<v4>)1/4

• v{6}≡((<v6>-9<v4><v2>+12<v2>3)/4)1/6

• If v does not fluctuate, v{2}=v{4}=v{6}=v

• In general v{4}<v{2}

• Event-plane method: <v> < v{EP} < v{2}

Alver et al 0711.3724

http://arxiv.org/abs/arXiv:0711.3724


v2 fluctuations in Pb-Pb

For CMS, I use v2{EP} as an approximation for v2{2}: 

probably explains the small discrepancy
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Gaussian fluctuations?
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• Gaussian (aka Bessel-Gaussian) flow fluctuations:

• V2 in nucleus-nucleus:  
v2{4}=v2{6}=v2{LYZ}=v2 in reaction plane

• V3 in nucleus-nucleus: v3{4}=0 
V2 in proton-nucleus:  v2{4}=0 

Voloshin et al. 0708.0800



Are v2 fluctuations Gaussian?

For ALICE and  CMS, I assumed v2{6}=v2{LYZ}:  Probably not good. 

Small non-Gaussianities seen by ATLAS. Larger for smaller systems. 
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Are v3 fluctuations Gaussian?

All 3 experiments see v3{4}≠0:  
non-Gaussian fluctuations clearly seen
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From initial state fluctuations
to flow fluctuations

• Take a Monte-Carlo model of initial conditions

• Evolve using relativistic hydrodynamics

• Compute particle distribution

• Average over events Paatelainen et al 
Schenke et al 
Bozek et al 
Werner et al



The origin of anisotropic flow
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Initial transverse 
density profile Final distribution

Elliptic flow v2

Triangular flow v3

Expansion



Initial anisotropies
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Schenke Tribedy Venugopalan 1202.6646

= Fourier decomposition of the initial density profile ρ(x,y)

  ｜ ∫rneinϕρ(r,ϕ)rdrdϕ｜
       ∫rn     ρ(r,ϕ)rdrdϕ

εn≡

|εn| < 1 by definition

ε2≡initial eccentricity
ε3≡initial triangularity



v2 is strongly correlated with ε2
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Gardim Noronha-Hostler Luzum Grassi 1411.2574

linear (Pearson) correlation coefficient 
in event-by-event viscous hydro
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v3 is strongly correlated with ε3
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Gardim Noronha-Hostler Luzum Grassi 1411.2574

linear (Pearson) correlation coefficient 
in event-by-event viscous hydro
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Flow as linear response

v2≈κ2 ε2

v3≈κ3 ε3
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response coefficients 

depend on system and centrality, not 
on details of initial conditions

fluctuate event to event. 

vn fluctuations are due to εn fluctuations

vn{4}/vn{2} = εn{4}/εn{2}



v2 fluctuations vs ε2 fluctuations

ε2 fluctuations from Glauber: in the ballpark
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v2 fluctuations vs ε2 fluctuations

Non-Gaussianities from Glauber: in the ballpark
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v3 fluctuations vs ε3 fluctuations

Non-Gaussianities from Glauber: in the ballpark
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A discussion at IS2013

• Non-Gaussian flow fluctuations are seen both in 
Pb-Pb (v3) and in pPb (v2)

• Similar non-Gaussianities are seen in initial state 
models

• Do we understand their origin? 

Alver et al. 0711.3724 
Bhalerao Luzum JYO 1107.5485

http://arxiv.org/abs/arXiv:0711.3724
http://arxiv.org/abs/arXiv:1107.5485


Distribution of initial anisotropy
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Central p+Pb collision:
ε2 from fluctuations only

small system:  
large fluctuations & 
anisotropies
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Gaussian? 
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New “Power” distribution
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P(ε2)= 2αε2(1-ε22)α-1
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Natural explanation for v2{4} in pPb
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CMS 1305.0609

Small system: large fluctuations: large v2{4}/v2{2}



Predictions: higher-order cumulants 
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• Using as input the 
experimentally measured ratio 
v2{4}/v2{2}

• Quantitative prediction for 
higher-order cumulants v2{6} 
and v2{8}  
 

• New CMS data (QM2014) in 
good agreement with our 
prediction



Conclusions
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• Direct evidence from experimental data that anisotropic 
flow in p-Pb and Pb-Pb collisions is driven by large 
anisotropies in the initial state: the statistics of εn hits the 
boundary εn<1 

• The statistics of large fluctuations is not described by the 
central limit theorem but nevertheless universal to a 
good approximation.

• Flow fluctuations reflect to a large extent fluctuations in 
initial anisotropies. Corrections to this picture? 

More in the next talk by Art Poskanzer



Perspectives
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• Experiments: explore flow fluctuations through 
the double-differential structure of pair 
correlations Talks by Wei Li, Rajeev Bhalerao 

• Hydro: do we understand the response to initial 
fluctuations beyond simple eccentricity scaling? 
More in the next talk by Art Poskanzer

• Initial state: understand on general grounds the 
initial anisotropies and their statistical properties.  
Talk by Jean-Paul Blaizot



Backup

28



Elliptic flow  v2 versus  
initial eccentricity ε2
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Niemi Denicol Holopainen Huovinen 1212.1008
Each point=different initial density profile.

v2 is almost perfectly linear in ε2 
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Triangular flow  v3 versus  
initial triangularity ε3

v3 is also strongly correlated with ε3 

Niemi Denicol Holopainen Huovinen 1212.1008
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Testing universality with cumulants

32

Each point: different number of hit nucleons in target
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Testing universality with cumulants
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Each point: different number of hit nucleons in target
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Testing universality with cumulants
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Each point: different centrality 
Pb-Pb: Larger system: smaller anisotropies
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Testing universality with cumulants
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Each point: different centrality
Pb-Pb: Larger system: smaller anisotropies 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ε{
4}

ε{2}

Pb+Pb KLN ε3



Testing universality with cumulants
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data from Avsar Flensburg Hatta JYO Ueda 1009.5643 
Each point: different parton multiplicity
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Higher-order cumulants 
(predicted by the power distribution)
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