Update on the wakefield measurement mover setup

S. Boogert, A.Lyapin, J.Snuverink (JAI-RHUL) K. Kubo (KEK)

28/1/2015

Outline

- Short recap
- Updated wakefield simulations
- Updated orbit study

Wakefield studies

- Goal: measure wakefield kick from Cavity BPM
 - Induces bunch tilt
 - Look at orbit change
- Effect is measurable, but some unknowns
 - Bunch length
 - Exact geometry
- Dedicated shifts April 2013
 - Using mover setup
 - 3 setups were measured:
 - 1 ref. cavity, 2 ref. cavities, 3 bellows
 - Here only 2 ref. cavity setup discussed

ATF2 layout

Wakefield

- Geometrical wake fields have been computed numerically with GdfidL (http://www.gdfidl.de)
 - Electromagnetic fields calculator in any 3D-structure
 - Finite element method
 - All higher modes included (up to cut-off frequency)
- The beam is represented as a line charge traveling along the z-axis with optional offsets in x and y, Gaussian distribution in z
- CPU and labor-intensive simulations (A. Lyapin)
- Wake field shape dependent on beam shape itself
 - Bunch length
 - Beam offset

Wakefield compensation setup

Comparison with simulation – LCWS13

- Measured orbit shape agrees well
- Measured effect is a factor 1.5 larger than simulation (numerical calculation + tracking)
- Already reduced from factor of 1.8, by adding flanges
- For more details see LCWS 2013 talk
- Possible discrepancy might be due to bunch length, charge or underestimation by simulation

Simulation improvements

- Combined flange and aperture step (24mm to 16mm)
 - Aperture step inside flange
 - Before separately added, but not a good approximation
- Bellows now simulated as tilted and longer
 - Before straight bellows and multiplied by 0.5

Combined simulation

Combined simulation

Comparison with simulation

- Measured orbit shape agrees well
- Now about a factor 1.2 larger than simulation
 - (numerical calculation + tracking)
- Possible remaining discrepancy might be due to bunch length, charge or (still) underestimation by simulation
- Now within experimental uncertainty:
 - bunch length (about half a mm in DR, effect on wakefield 5-10%)
 - Not measured in extraction line
 - charge(ICT calibration error 5-10%)

Conclusions

- An update to the wakefield measurements with mover setup was presented
- Wakefield from reference cavity measured in downstream beam orbit
- Wakefield EM-simulations were improved (more realistic)
 - Total increase of 30% in wakefield strength
- Much better agreement between simulation and data
 - Improved from a factor 1.5 to 1.2
 - Remaining difference within experimental uncertainty
- The increased wakefield strength might also explain the observed beam size dependence wrt the mover setup
- PRSTAB paper is close to finished (under review)

Backup

GdfidL: wakepotential

C-band reference

- Higher impedance than position cavity (smaller aperture and diameter)
- Used to be 4 in the beamline, now 1 providing the reference signal and 2 in the test location in April

Agreement GdfidL / ACE3P

ACE3P: https://portal.slac.stanford.edu/sites/ard_public/acd/Pages/Default.aspx

Orbit analysis

- Take all upstream BPM readings
- All BPM readings averaged subtracted
- Find contribution between those BPM readings and downstream BPM readings
- Subtract orbit jitter per pulse (by matrix inversion)
- Remaining correlation with MREF setup movement will give wakefield kick
- Reference setup ideally placed with high resolution cavity BPMs both upstream and downstream

Orbit analysis 2

- Divide BPM data wrt to reference cavity mover:
- Upstream orbit matrix A (n₁ BPMs x m pulses)
- Downstream orbit matrix B (n₂ BPMs x m pulses)
- Calculate correlation X (n₁ x n₂):
 - $AX=B \rightarrow X = A^{-1}B$ (inversion with SVD method)
- Residuals R (n₂ x m) (since over-constrained system):
 - -R = AX B

ICT charge vs measured wake field

