

X-Band Test Stands: Conditioning and Operational Algorithms

Joseph Tagg National Instruments Switzerland

Agenda

- System goal
- Software architecture
- Algorithm description
 - Tuning
 - Conditioning

Each accelerating structure needs a few thousand hours of high power RF conditioning

The purpose of the software is to automate the X-band test stands to run 24/7.

- Automatically increase power over time
- Tune pulse compressor (XBOX1)

Software Versions

- XBOX1 software
 - TERA CBOX
 - CTF Dogleg
- XBOX2 software
 - SLAC XBOX
 - XBOX3
- Further external interest
 - -CPI
 - TERA TULIP

Software Architecture

Software Architecture

Pulse Compressor Tuning (XBOX1)

Temperature changes lead to:

- Loss of performance
 - Total volume offset
- Increased reflection back to
 - Relative volume offset

Tuning Indicators

PC Tuning Algorithm Loop (XBOX1)

if reflected_dip > limit: change one cavity volume if things get worse: inverse direction of change else: if slope good: work on power amplitude PID else: change volume of both cavities if things get worse: inverse direction of change

Pulse Compressor Tuning (XBOX2)

- Water-cooled PC cavities
- Programmable chiller units maintain temperature
- No further automatic control at this time

Photo by Ben Woolley

Software Architecture

Power/Conditioning Control

- Fast second
 - PID loop on the incident power to the structure
- Medium minutes
 - increase power by 10kW every few minutes if no BD
 - reduce power by 10kW if successive BDs too close in time
- Slow hours
 - BDR measurement and stop power increase if it is too high
 - Moving average of 1M pulses

Conditioning on Vacuum

- When outgassing is the limiting factor
- Replace medium-term algorithm to stabilize at a specified pressure

Allows conditioning of any high-power RF device

CTF Dogleg Amplitude Control

- Requires 2 setpoints:
 - With beam present
 - Without beam present
- Increase power when beam detected
- React to beam loss by immediately reducing power output to pre-beam levels

Dogleg Beam Loading

Image by Luis Navarro

Phase Control (XBOX2)

XBOX1 Results

CLIC Workshop 2015 - Joseph Tagg

Thank you for your attention.

Questions?

