

Crab Cavity Results

Ben Woolley

&

The Xbox team

Outline

- Crab cavity RF Design
- Fabrication
- Tuning
- High power testing: Xbox-2
- Conditioning and Performance
- Breakdown locations
- Future testing

RF Design

- Peak electric and magnetic fields of the dipole mode are located 90 degrees from each other on the iris
- Surface Poynting flux S_{surf} is however at 45 deg to both E and H
- Location of the breakdown on the iris provides critical information about the role of magnetic field in breakdown.

A/n	H _{surf}
2.68e6	
2.19e6	
1.87e6	
1.54e6	
1.22e6	
8.94e5	
5.69e5	
2.4465	
Type	H-Field (peak)
lonitor	Hode 1
component	Abs
omponent	2.78533e+806 A/m at 4.81481 / 1.254 / 8.05568
taxinum-3D requency	11.9941

Fabrication

Manufactured with normal CERN techniques:

- Discs ultra-precision machined at VDL
- Stacking and alignment performed at CERN or Bodycote.
- Coupler brazing and bake out at Bodycote.

LANCASTER UNIVERSITY

Tuning

centring V guiding the wire for bead-pull measurements

nitrogen supply

input (chosen and marked)

tuning pins (4 per cell)

temperature sensor

cooling block

output (marked)

Before Tuning

Tuning - E. Daskalaki, A. Degiovanni, C. Marrelli, M. M. M. Navarro Tapia, R. Wegner, B. Woolley

	tuning record of ds11 *sign(df) (mU)													
cell	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1 in														
2														
3														
4														
5														
6 7														
7														+4.8
8 9												+9.6	+14.0	
9											-8.9			-3.4
10									+7.0	+4.0				
11					+7.4	+12.0								
12 out	+8.1	+10.2	+12.3	+8.7			-7.5	-3.2						

	tuning record of ds11 *sign(df) (mU)												
cell	15	16	17	18	19	20	21	22	23	24	25	26	sum
1 in											+9.8		+9.8
2										+10.5		+9.9	+20.4
3								+6.2	+21.7				+27.9
4					+5.3		+3.8						+9.1
5				+6.4		+3.1							+9.5
6	+5.0		+5.7										+10.7
7	+7.0	-3.4											+8.4
8													+23.6
9													-12.3
10													+11.0
11													+19.4
12 out													+28.6

Tuning Results

bead-pull @ 11.9922 GHz

Xbox-2

 Klystron (50MW, 1.5us pulse) For Crab cavity test: SLAC XL5 klystron

Pulse compressor (250ns, ratio ~3)

• Stainless steel load

Crab Cavity Diagnostics

diagnostics with the Uppsala dark

current spectrometer.

The Cockcroft Institute

Xbox2 Operator Display

Results

- 23rd October 10th December
- Almost 2600 recorded breakdowns
- New klystron allowed the pulse compressor to be turned off

Results

- 23rd October 10th December
- Almost 2600 recorded breakdowns
- New klystron allowed the pulse compressor to be turned off

Initial Conditioning

- 23rd October 30th October
- Almost 1100 recorded breakdowns
- Constant BDR ~5e-5

Nominal performance

- 31st October 5th November
- 82 (73 when filtered by eye) recorded breakdowns
 - Overall BDR 3.4e-6 but if we discount first 36 hours BDR 1.3e-6

How high?

- Pulse width 125ns
- 5th November 12th November
- About 1250 recorded breakdowns

BDR stable/decreasing ~3e-5 until 27 MW reached... Then oscillates by 1.5 orders of magnitude

LANCASTER UNIVERSITY

20MW Performance

- Pulse width 215ns
- 13th November 17th November
- About 31 recorded breakdowns
- Overall BDR 1.8e-6 but if we discount first 36 hours BDR ~7e-7

20 MW no compression

6.00E-006

4.00E-006

2.00E-006

Radiation Monitor

 $07/11/1412:00:00 \quad 07/11/1418:00:00 \quad 08/11/1400:00:00 \quad 08/11/1400:00:00 \quad 08/11/1412:00:00 \quad 08/11/1418:00:00 \quad 09/11/1400:00:00 \quad 09/11/1400:00:00 \quad 09/11/14100:00:00 \quad 09/11/1400:00:00 \quad 09/11/1400$

BD detection + cell location

- Transmitted pulse drops as the arc is established.
- Reflected power increases to the same order as the incident pulse.
- We can use the difference in time between the transmitted power falling and the reflected power increasing to find the BD cell location.
- The phase of the reflected signal is used to pinpoint cell location.

Preliminary BD cell results

Transmitted drop minus Reflected rise times

- Relatively flat distribution (possibly a standing wave pattern at every 3rd cell?)
- However large number of events 'outside' the structure needs further analysis.
- Fast group velocity; 2.9%c for the crab vs 1.8-0.6%c for accelerating structures increases the errors.

Preliminary BD cell results

- Shortly after BD there is only a single angle detected..
- At +500ns after the BD there is a large spread supporting the travelling arc hypothesis.

Incident minus reflected angle 50ns after BD

Incident minus reflected angle 500ns after BD

New Klystron: CPI#2

on 17.11.2014 XL5 was replaced by CPI#2

XL5 tube out of XBOX#

Diode tests (no RF) of CPI#2 tube showed that 0.7 GHz gun oscillations starts at about 240 kV and even generate RF power from the input cavity:

12 GHz pulse from the input cavity

Fortunately, going higher in voltage, the instability zone moves towards the rise/fall time, so the plat top can be used now. Example of the pulse with ~ 5 MW RF peak power expected:

Sneak peek: DC spectrometer

The Cockcroft Institute

- Initial results show a mix of single projections and also many multiple hits on the screen. This suggests some of the electrons are kicked by the deflecting field.
- This effect is seen with both the slit collimator and pin hole collimator.

Future tests

- Change power and pulse width to get BDR vs power and pulse width plots.
- More detailed analysis of BD distributions in time and cell position.
- Push up power level or pulse width 'to destruction'....
- Post-mortem to assess the position on the iris where most damage occurs. (E,H,or Sc?)

Summary

- Crab cavity RF design was presented and fabrication described.
- Tuning results were discussed
- Xbox-2 test stand used for the high power test
- Conditioning and Performance of structure evaluated.
- Breakdown analysis showed almost even distribution of breakdowns along the structure.
- Dark current spectrometer results previewed.
- Next steps discussed.

Thank you

