

Preliminary results with capacitively coupled pixel detectors for CLIC

Daniel Hynds (on behalf of many people)

Capacitively coupled hybrid pixel detectors

- Baseline technology for CLIC vertex detector assumed to by hybrid pixel detectors. Requirements are tight:
 - □ Minimal power consumption, high spatial precision, fast timestamping, infinitely thin...
 - R&D directed toward small pitch hybrid pixel detector (CLICpix demonstrator in 65 nm) bumpbonded to thin sensor - ultimately 50 μm sensor on 50 μm thinned ASIC
- Emerging technology in particle physics: high voltage/high resistivity CMOS
 - Aim to replace passive diode sensors with "smart" sensors containing signal amplification
 - Use capacitive coupling instead of bump bonding
- Industry-standard process
 - Use deep n-well to shield electronics and allow application of a (mild) bias voltage to the substrate => fast drift signal from depleted region
- Prototype assemblies under investigation for CLIC

HV-CMOS, the CCPDv3 chip

- CCPD (Capacitively Coupled Pixel Detector) version 3 designed by I. Perić
 - □ Fabrication in 180 nm AMS technology (deep n-well shielding, ~60 V rated, ~90 V tolerant)
 - 25 μm square pixels, 64 × 64 matrix designed to fit the CLICpix prototype readout ASIC
 - 4 columns contain a single amplification stage (positive signal), while 60 columns contain two-stage amplification (negative signal)
 - Relatively simple pixel architecture, limited standalone readout capabilities (analogue output possible from ~few pixels for debugging)

CLICpix

- CLICpix is the prototype readout ASIC designed to fit CLIC vertex detector specifications
 - $^\square$ Manufactured in 65 nm CMOS with small pixel size (25 µm \times 25 µm) and containing a matrix of 64 \times 64 pixels
 - □ Two 4-bit counters on each pixel for simultaneous ToT and ToA (or ToT and counting...)
 - Shutter-based data acquisition but with optional on-chip data compression
 - Power pulsing of the pixel matrix

Known issues:

- Small overlap of discriminator signal line with CSA input pad => negative pulse injected into the front end when the discriminator starts firing
- Will add signal to negative pulses, subtract signal for positive pulses

Epoxy glue

Epoxy glue

Lab measurements

Charge spectra with HV-CMOS

- Lab tests performed on the HV-CMOS using single pixel analogue output to investigate signal shape and charge spectra with sources
 - Front-impinging ⁵⁵Fe on bare HV-CMOS assembly (~6 keV)
 - □ Back-impinging ⁹⁰Sr on full HV-CMOS + CLICpix assembly
 - (results shown for 2-stage amplifier design)

Induced signal in CLICpix

- Analogue output from several pixels on the HV-CMOS device can be monitored individually
 - Can take data in parallel with the CLICpix, correlate the pulse shape with the ToT
 - Open shutter, wait for signal on scope, close shutter and read out before subsequent hits
- Can see the difference between polarities
 - Injected negative charge gives a lower effective threshold when operating with negative polarity, higher effective threshold when operating with positive
 - □ Using nominal values of threshold this gives roughly 625 e⁻ injected charge

Beam data

Timepix3

CLICpix

Threshold scan

- Efficiency versus threshold for both polarities measured (60 V)
 - Pointing resolution from the telescope estimated < 2 μm
- Clear difference in performance
 - Able to reach high efficiency in negative polarity mode (2-stage amplification) with threshold
 ~ 1100 e⁻
 - Single amplification stage pixels suffer from lower signal and subtraction of charge, but given fall off in 2-stage pixels it seems likely that with a new chip 500 e⁻ threshold will require 2nd stage

Bias scan

- High efficiency observed in negative polarity mode without bias on the HV-CMOS
 - □ Large component of collected charge from diffusion? Or large built-in depletion layer?
 - \square Estimates for depleted region vary, but typically ~10 μ m at 60 V

Bias scan - negative polarity

- Can map the variation in efficiency across the 2-pixel unit (charge injection differs between odd and even columns due to layout of signal routing)
 - Efficiency loss in the pixel corners for no applied bias (low threshold)
 - Clear difference between columns

Pixel cross-coupling

- Signal transfer between CCPDv3 and CLICpix via capacitive coupling might have some cross-coupling between pixels on the same/different device(s)?
 - Scan the beam across the matrix and observe the behaviour of all pixels
 - Look at when pixel starts responding, and when it stops
 - Ideal function should be top hat function with width described by the lateral charge diffusion

Pixel cross-coupling

- Different response in row and column directions
 - In each case can fit for the contribution from each pixel clear signal from coupling to neighbours
 - In the row direction there is a large contribution from the pixel immediately to the right => strongly suggests misalignment in the row direction
 - Glueing studies planned to evaluate precision of the flip-chip machine

Summary and plans

- Promising early results from capacitively coupled assemblies
 - □ Simple pixel layout with 2-stage analogue amplification shows high (>99%) efficiency
 - High efficiency without applied bias voltage, 30 40 V required to reduce inefficiencies between pixels
 - Paper in preparation (pre-draft going through first comments)
- Fabrication steps
 - Larger (and injection-free) version of CLICpix under development
 - New HV-CMOS devices planned on higher resistivity substrate (increased drift region) possible digital version(s) in addition to straightforward 2-stage amplifier
- Future studies
 - Measurements of coupling capacitance (and cross-capacitance) due to gluing
 - Beam measurements to evaluate power-pulsing of the front end and timewalk of the assembly
 - Active depth measurements to determine drift region and contribution of diffusion

BACKUP

Beam data - overview

- Full matrix appears responsive (negative polarity)
 - Small number of hits observed on positive polarity pixels, due to undershoot of the signal

pulse

- Reconstruction performed and residuals good
- Slight variation in hits with column?

