

CLICdp achievements in 2014 and goals for 2015

Lucie Linssen, CERN on behalf of the CLICdp collaboration

CLIC workshop, January 30th 2015

CLIC detector and physics (CLICdp)

Australia	Australian Collaboration for Accelerator Science (ACAS), University of Melbourne		
Belarus	National Scientific and Educational Centre of Particle and High Energy Physics (NC-PHEP), Belarusian State University, Minsk		
Chile	Pontificia Universidad Católica de Chile, Santiago		
Czech Republic	Institute of Physics of the Academy of Sciences of the Czech Republic, Prague		
Denmark	Department of Physics and Astronomy, Aarhus University		
France	Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Annecy		
Germany	Karlsruher Institut für Technologie (KIT), Institut für Prozessdatenverarbeitung und Elektronik (IPE), Karlsruhe		
Germany	Max-Planck-Institut für Physik, Munich		
Israel	Department of Physics, Faculty of Exact Sciences, Tel Avin University		
Norway	Department of Physics and Technology, University of Bergen		
Poland	The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow		
Poland	Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow		
Romania	Institute of Space Science, Bucharest-Magurele		
Serbia	Vinca Institute for Nuclear Sciences, Belgrade		
Spain	Spanish Network for Future Linear Colliders		
Switzerland	CERN		
Switzerland	Département de Physics Nucléaire et Corpusculaire (DPNC), Geneva		
United Kingdom	The School of Physics and Astronomy, University of Birmingham		
United Kingdom	University of Bristol		
United Kingdom	University of Cambridge		
United Kingdom	University of Glasgow		
United Kingdom	The Department of Physics of the University of Liverpool		
United Kingdom	Oxford University		
USA	Argonne National Laboratory, High Energy Physics Division		
USA	University of Michigan, Physics Department		

http://clicdp.web.cern.ch/

Now 25 institutes (5 new in 2014)

In 2014:

3 CLICdp working groups:

- WG analysis (incl. software)
- WG vertex detector technology
- WG detector optimisation

╋

Collaboration with:

- ILC detector concepts
- CALICE + FCAL

Wealth of production and decay modes addressed at all three CLIC energy stages

A collaboration-wide effort ! => good overview of CLIC Higgs capabilities

Draft publication is under collaboration review

2014 => Higgs benchmark analyses

★ Model-independent global fits

Parameter	Measurement precision			
	350 GeV	+ 1.4 TeV	+3.0 TeV	
	500 fb^{-1}	$+1.5 \text{ ab}^{-1}$	$+2.0 \text{ ab}^{-1}$	
<i>S</i> HZZ	0.8%	0.8~%	0.8 %	
<i>g</i> hww	1.8%	0.9~%	0.9~%	
$g_{ m Hbb}$	2.0 %	1.0 %	0.9~%	
8 _{Hcc}	3.2 %	1.4~%	$1.1 \ \%$	
$g_{ m H au au}$	3.7 %	1.7~%	1.5 %	
$g_{ m H\mu\mu}$	_	14.1 %	5.6 %	
$g_{ m Htt}$	—	4.1 %	\leq 4.1 %	
$g^\dagger_{ m Hgg}$	3.6%	1.2 %	1.0 %	
$g^{\dagger}_{ m H\gamma\gamma}$	_	5.7 %	< 5.7 %	
$\Gamma_{\rm H}$	5.0 %	3.6 %	3.4 %	

- ★ ~1 % precision on many couplings
 - limited by g_{HZZ} precision

-80% electron polarisation assumed above 1 TeV

Note: contrary to (HL-)LHC, CLIC results are model-independent

2014 => software development

Major improvements of simulation and reconstruction software Most important new elements:

- New geometry description (DD4hep)
 - For simulation, reconstruction, event display, alignment....
 - Generic, developed under AIDA EU project, also for other projects (FCC)
- New/optimised track reconstruction for all-silicon tracker

Excellent progress in 2014 towards the new software framework

CERN

2014 => WG vertex detector technology

Engineering studies on support structures and air cooling

Full-scale thermo-mechanical mock-up of the vertex detector

Ultra-light supports tested for vibration stability in air flow

Lucie Linssen, January 30st 2015

Better understanding through detailed simulations

Lucie Linssen, January 30st 2015

2014 =>

WG detector optimisation

towards one CLIC detector model

include lessons learnt so far include experience from hardware R&D

Already agreed working hypotheses:

- Vertex: 0.2%X₀/layer
- Vertex: double layer geometry
- Vertex: spiraling disks
- Tracker: all silicon
- Tracker: radius 1.5 m, half-length 2.3 m
- ECAL: 25 layers, 5×5 mm² cell sizes
- HCAL: steel absorbers
- Solenoid field: 4 Tesla

achievements

2014

Ongoing assessments:

- Tracker layout and technology options
- HCAL: cells sizes
- Enhancement of forward calo coverage
- QD0 in detector or in tunnel
- Luminosity for a long L*

2014 R&D calorimetry CALICE / FCAL

FCAL front-end development

FCAL multi-layer test beam module

Progress in many areas in parallel

- Hardware development
- Laboratory tests
- Beam tests @ CERN PS
- Data analysis

CALICE scintillator lab test

CALICE scintillator (+ silicon) calorimeter beam test

2015, some of the main objectives

New CLIC detector concept

- Continued studies, => new track reconstruction will be important
- Increase forward acceptance
 - Re-enforced MDI involvement !
 - Assess Luminosity performance for long L*

Consolidation of new software tools

CLIC physics benchmark studies

Shift focus from Higgs to Beyond Standard Model (BSM)physics and top physics

- Precision top physics as tool for New Physics (first CLIC stage + higher energies)
- Precision Electroweak physics as tool for New Physics
- BSM searches (dark matter, SUSY, compositeness, etc....)

R&D activities:

- CLIC vertex detector technology
- Fine-grained calorimetry (CALICE, FCAL)
- New silicon tracking hardware activity

ambitious mid 2015 goal

Main silicon tracker technology

Tracker requirements

- 7 μm single point accuracy
- time-stamping 10 ns
- ~5-6 tracking layers
- Radius ~1.5 m, half-length ~2.3 m

High occupancies in certain regions:

 \Rightarrow Calls for large pixels and/or short-strips

Very light => ~1%X₀ per layer

- Requires very thin materials/sensors
 => is this compatible with charge sharing and 7µm accuracy?
- Can we use power pulsing ?
- Air cooling probably not possible....

=> new CLIC tracker technology working group

Summary

Good technical progress in 2014, in many domains:

- Higgs benchmarking studies !
- Detector optimisation towards a new CLIC detector concept
- Development towards improved software tools
- Vertex technology R&D
- Fine-grained calorimeter R&D (CALICE, FCAL)

Possible thanks to many contributors !

Objectives for 2015 will focus on:

- A new CLIC detector concept !
- Consolidation of the new software tools
- Physics => focus more on Beyond Standard Model capabilities
- Continuation of vertex technology R&D
- Continuation of fine-grained calorimeter R&D (CALICE, FCAL
- Start of main silicon tracker R&D

