### CLIC BPM R&D MB Cavity BPM and DB Stripline BPM

J. Towler, A. Benot-Morell, S. Boogert, F. Cullinan, A. Faus-Golfe, T. Lefevre, A. Lyapin, J. Nappa, S. Smith, L. Søby, S. Vilalte, M. Wendt

CLIC Workshop, January 27th, 2015



## Contents

### 1. Main Beam Cavity BPM

- a) Main beam requirements
- b) Cavity BPM basics
- c) Stainless steel prototype
- d) Copper prototype
- e) Conclusions and future work

### 2. Drive Beam Stripline BPM

- a) Drive beam requirements
- b) Stripline BPM basics
- c) Compact prototype
- d) Terminated prototype for CLIC TBM
- e) Conclusions and future work

# **CLIC MB BPM Requirements**

- 50 nm spatial and 50 ns time and resolution.
  - Multiple measurements in a 156 ns long bunch train
  - Dynamic range of  $\pm 100 \mu m$
  - >4000 BPMs
- 14 GHz for CLIC
  - Design is scalable
- 15 GHz resonant frequency for CTF prototype.
- Q factor tailored to match the required time resolution
  - Prototype design based on stainless steel cavity, new design uses copper.

#### **MB** parameters and **BPM** Requirements

| Machine                   | CLIC    | CALIFES           |
|---------------------------|---------|-------------------|
| Bunch Spacing             | 0.5 ns  | 0.667 ns          |
| Bunch Length              | 44 µm   | 225 µm            |
| Train Length              | 156 ns  | 1 – 150 ns        |
| BPM Spatial<br>Resolution | <50 nm  | <50 nm            |
| BPM Time<br>Resolution    | <50 ns  | <50 ns            |
| BPM Accuracy              | <100 µm | <100 µm           |
| BPM Dynamic<br>Range      | ±100 µm | $\pm$ 100 $\mu m$ |
| BPM Resonant<br>Frequency | 14 GHz  | 15 GHz            |

# **Cavity BPM Basics**

- Centered beam excites monopole mode ( $TM_{010}$ ). Amplitude dependent on charge
- Away from the center, othe modes are excited.
  - First order dipole mode (TM<sub>110</sub> depends linearly on beam offset and charge.
- TM<sub>110</sub> splits in 2 orthogona modes.
- Beam excites other unwant higher order modes.
  - Requires suppression of unwanted modes.

 $V_{out} = -$ 

m excites  
ode (TM<sub>010</sub>).  
pendent on charge  
e center, other  
cited.  
ble mode (TM<sub>110</sub>)  
ry on beam offset  
n 2 orthogonal  
other unwanted  
modes.  

$$\frac{W}{2}\sqrt{\frac{Z}}{\frac{e}{R}}\frac{H}{u}}{\frac{e}{Q}}\frac{q}{u}_{0}^{u}q}\frac{x}{x_{0}}$$

# Stainless Steel Prototype BPM

- Two cavities:
  - Position cavity: pillbox
  - Reference cavity: re-entrant pillbox
- Stainless steel used to lower Q factor: ~ 250
  - Results in unnecessary high temporal resolution
  - Matched low Q in reference cavity
- Waveguide/coax
   Couplers need tuners
  - Very sensitive to antenna/wall separation
  - Mechanical tolerances



Reentrant reference cavity Dipole cavity with waveguides



# **Stainless Steel BPM Testing**

- Installation at end of probe beam line.
- Charge sensitivity measurements Current monitor reading
  - Fine charge scan not achieved
- Position sensitivity
  - Use hor./vert. translation stages







| Sensitivity Measurement      | Measured   | Estimate |
|------------------------------|------------|----------|
| X Position (V/nC/mm)         | 16.6 ± 0.2 | 17.1     |
| Y Position (V/nC/mm)         | 15.9 ± 0.4 | 17.1     |
| Charge (single bunch) (V/mm) | 128.8 ± 2  | 117      |
| Charge (multi bunch)         | 608 ± 2    | -        |

# **Copper Cavity BPM Prototype**

- Modified cavity BPM design
  - Main geometry unchanged.
  - Copper to raise Q to 500
  - New feedthrough design.
- Prototype manufactured for RF testing
  - Poor dimensions, particularly the reference cavity
- Measurements compared with simulations
  - Before and after brazing
  - Frequencies and Q factors
  - External Q's high feedthroughs
  - Excellent low cross coupling



| Cavity        | Q <sub>L</sub> | f <sub>0</sub> /GHz |
|---------------|----------------|---------------------|
| Referenc<br>e | 938            | 14.772              |
| Predicted     | 500            | 15.0                |
| Position      | ~830           | 14.996              |
| Predicted     | 524            | 15.0                |

CLIC Workshop 2015

# **Conclusion and Future Work**

- Stainless steel prototype evaluated during 2013/2014
  - Promising performance, improvements possible
- Improved copper prototype designed
  - Awaiting delivery of mechanical parts, RF measurement and brazing
  - Q higher than expected, time resolution
  - Feedthroughs variation in  $Q_{ext}$
- 3 copper BPMs to be installed in CTF3
  - Remove beam jitter
  - Determine spatial resolution
  - Simultaneous spatial and temporal resolution?
  - New electronics system





## **CLIC DB BPM Requirements**

- Close proximity to PETS
  - 130 MW of RF power at 12 GHz propagating along the Drive Beam pipe ( $fc_{TE11} = 7.64$  GHz).
  - Need to measure mW beam signals in close proximity of MW RF pulses.
  - Suppression of 12 GHz PETS interference needed.
- Simple and economic design imposed by number of units and available installation space (<150 mm).
- Tight resolution and accuracy requirements.

#### **BPM Requirements**

| N° BPMs            | 41580  |
|--------------------|--------|
| Beam<br>current    | 100 A  |
| Bunch<br>frequency | 12 GHz |
| Bunch length       | 10 ps  |
| Train length       | 242 ns |
| Aperture           | 23 mm  |
| Spatial resolution | 2 µm   |
| Time resolution    | 10 ns  |
| Accuracy           | 20 µm  |

#### CLIC Workshop 2015

#### Stripline BPM Basics

- ▶ 130 MW PETS RF interference at 12 GHz needs to be suppressed.
  - BPM technology with a suitable frequency response.
- Two possible versions of stripline BPM:
  - <u>Compact, short-circuited</u>: downstream short-circuited electrodes, simple, low cost.
  - <u>Terminated</u>: 8-ports, improved notch-filter effect, loop-through calibration possible.





# **Compact Stripline BPM**



- Stripline prototype with short circuited electrodes installed in TBL at CTF3 and successfully tested with beam.
- FESA class developed for synchronous data acquisition with the rest of TBL BPMs
- Preliminary resolution tests performed using MIA/SVD analysis: 15 μm (H and V planes) for a 3A beam current.







### Terminated Stripline BPM for CLIC TBM

- First prototype provides insufficient suppression of the 12 GHz CLIC RF power signal.
- Longitudinal dimensions are very close to transverse ones (25 mm vs 23 mm) → non-ideal transfer response (non TEM fields).
- New design intends to tune the <u>third notch</u> of the frequency response to 12 GHz  $\rightarrow$  electrode length <u>*I* = 37.5 mm</u>.
- Option for a <u>loop-thru calibration</u> via the downstream ports.



## **Terminated Stripline BPM for CLIC TBM**

- 2 Stripline prototypes with 50Ω-terminated electrodes developed for CLIC Module and installed in summer/autumn 2014.
- 8 port design for better notch filter effect and loopthrough calibration.
- Enhanced PETS interference suppression at 12 GHz (\*).





#### Terminated Stripline BPM for CLIC TBM Mechanical realization



- >  $Z_0$  very sensitive to electrode and feedthrough pin fabrication tolerances ( $\Delta Z_0 = \pm 3.5 \ \Omega \ / \ 0.1 \ mm$ ).
- Target range:  $Z_0 = 50 \pm 1 \Omega$

#### Terminated Stripline BPM for CLIC TBM Frequency Response Measurement



45 dB-deep  $3^{rd}$  notch, moves between 11.4-12 GHz  $\rightarrow$  Limited RF measurement because of poor flange connection.



• Directivity: ~40dB up to 4 GHz  $\rightarrow$  LHC (25–



#### Terminated Stripline BPM for CLIC TBM Installation in CLEX



- Two installed units:
  - CM.BPL0645
  - CM.BPL0685
- Beam tests planned for spring 2015



CLIC Workshop 2015

### **Conclusions and Future Work**

- Compact prototype
  - Insufficient suppression of 12 GHz PETS interference.
  - Good linearity/sensitivity results with beam.
- Terminated prototype
  - Improved suppression of 12 GHz PETS interference.
  - Excellent directivity also interesting for HL-LHC.
  - Practical assembly aspects and cost to be optimized.
- Plans for 2015
  - Beam test at CTF3 (CLIC Module) of terminated prototype (2 units)
  - Study of alternative technologies, e.g. buttons.

# Thank you

### 2 - Stripline BPM Basics





### Passive filters for DB Stripline BPM



### Geometrical Issues in Compact Prototype



 Lobe distortion grows with electrode width.  TF sensitive to resonance at *f*<sub>TM\_01</sub>=9.99 GHz if aperture and electrode length become comparable.

### Beam Tests at CTF3

