

Low ϵ tuning and Non-linear dynamics for CLIC DR

Javi Alabau-Gonzalvo Yannis Papaphilippou

GOAL:

- Define a tuning procedure to bring the vertical emittance to the design value $(\varepsilon_{\rm V} < 1~pm \cdot rad)$ to allow for IBS growth) under a misaligned lattice.
- Identify the alignment tolerances.
- Study non-linear behaviour of the lattice.

OUTLINE:

- Low Emittance tuning
 - Effect of misalignments
 - Closed orbit correction
 - Coupling and dispersion correction
- Adding BPM resolution
- Tolerances
- Dynamic aperture
 - Impact of Synchrotron Radiation in DA
- Frequency Maps

Symbol	Value
E [GeV]	2.86
C [m]	427.5
$N_b[10^9]$	4.1
$\varepsilon_{x,n}[nm{\cdot}rad]$	456
$arepsilon_{\mathcal{Y},n}[nm{\cdot}rad]$	4.8
Q_x	48.34
$Q_{\mathcal{Y}}$	16.39
	E [GeV] $C [m]$ $N_b [10^9]$ $\varepsilon_{x,n} [nm \cdot rad]$ $\varepsilon_{y,n} [nm \cdot rad]$ Q_x

Parameter	Symbol	Value
Energy	E [GeV]	2.86
Circumference	C [m]	427.5
Bunch population	$N_b[10^9]$	4.1
Hor. Norm. Emittance	$\varepsilon_{x,n}[nm{\cdot}rad]$	456
Ver. Norm. Emittance	$arepsilon_{\mathcal{Y},n}[nm{\cdot}rad]$	4.8
Horizontal Tune	Q_x	48.34
Vertical Tune	$Q_{\mathcal{Y}}$	16.39

- 100 TME arc cells
 - Small defocusing gradient dipoles
- LSS
 - 52 SC damping wigglers
- DS and beta matching cells
- Steady-state emittance dominated by IBS due to high bunch charge and small size in 3 dimensions

- Quads powered individually.
- Correctors installed:
 - 320 vertical:
 - 141 per arc, 3 per Dispersion Suppressor, 13 per LSS
 - 312 horizontal:
 - 141 per arc, 1 per Dispersion Suppressor, 13 per LSS
- Monitors installed:
 - 358 vertical&horizontal:
 - 141 per arc, 6 per Dispersion Suppressor, 26 per LSS
- 2 sextupole families in the arcs.
- Skew quads installed as windings in the sextupoles.

Low emittance tuning simulations

- Nominal lattice with PDR beam \leftarrow $\varepsilon_y = 316 \ pm \cdot rad$
- Equilibrium emittance $\varepsilon_y = 10^{-37} m \cdot rad$ (zero current)
- H&V CO correction
- Coupling and Dispersion correction
- RF Matching
- Chromaticity correction
- Measure equilibrium emittance

Tuning algorithm

Simulations done in MADX

Low emittance tuning simulations

- Nominal lattice with PDR beam \leftarrow $\varepsilon_y = 316~pm \cdot rad$
- Feed misalignments
- H&V CO correction
- Coupling and Dispersion correction
- RF Matching
- Chromaticity correction
- Measure equilibrium emittance

Tuning algorithm

Simulations done in MADX

Feed misalignments – Tuning algorithm

Quadrupole vertical off-set (QV)

$$B_x = k(y + \Delta y) = ky + k\Delta y$$

ortogonal quad + constant term (vertical dipole)

Quadrupole roll (QR)

$$\begin{pmatrix} B_x \\ B_y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} ky \\ kx \end{pmatrix} = \begin{pmatrix} ky \cos \theta - kx \sin \theta \\ kx \cos \theta + ky \sin \theta \end{pmatrix}$$

ortogonal quad + skew quadrupole

Dipole roll (DR)

$$\begin{pmatrix} B_x \\ B_y \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 0 \\ B \end{pmatrix} = \begin{pmatrix} -\underline{B} \sin\theta \\ \overline{B} \cos\theta \end{pmatrix}$$

horizontal dipole + vertical dipole

Sextupole vertical off-set (SV)

$$B_{x} = kx(y + \Delta y) = kxy + \underline{kx\Delta y}$$

$$B_{y} = k(x^{2} - (y + \Delta y)^{2}) = k(x^{2} - y^{2}) - 2\underline{ky\Delta y} - (\Delta y^{2})$$
ortogonal sextupole + skew quadrupole

Mainly emittance grows through:

Betatron coupling

Directly generated and vertical non-zero closed orbit [through sexts]

Vertical dispersion

Directly generated and vertical non-zero closed orbit [through quads]

Feed misalignments – Tuning algorithm

- Apply gaussian distributions truncated at 2.5 sigma.
- Lattice too sensible to ARC quadrupole offsets (LSS quads offsets have no influence on sensibility)
- MADX Twiss calculation fails after applying misalignments.

• For quadrupole misalignments divide the error in 7 parts and apply them gradually, correcting x and y CO each step.

Low emittance tuning simulations

- Nominal lattice with PDR beam \leftarrow $\varepsilon_y = 316 \ pm \cdot rad$
- Equilibrium emittance $\varepsilon_y = 10^{-37} m \cdot rad$ (zero current)
- H&V CO correction
- Coupling and Dispersion correction
- RF Matching
- Chromaticity correction
- Measure equilibrium emittance

Tuning algorithm

Simulations done in MADX

Closed Orbit correction – Tuning algorithm

Overview – Tuning algorithm

Low emittance tuning simulations

- Nominal lattice with PDR beam \leftarrow $\varepsilon_y = 316 \ pm \cdot rad$
- Feed misalignments
- H&V CO correction
- Coupling and Dispersion correction
- RF Matching
- Chromaticity correction
- Measure equilibrium emittance

Tuning algorithm

Simulations done in MADX

- **Previously**, the correction canceled dispersion and x-y coupling term of the one turn transfer matrix.
 - x-y coupling term was taken directly from MADX, not realistic.
 - To introduce BPM resolution had to simulate the whole transfer matrix measurement.
- Now, build response matrix relating skew strengths with:
 - Dispersion at each BPM (D)
 - Change in vertical position at each BPM when beam is horizontally excited by a specific kicker (C).

$$\begin{pmatrix} & \Delta \eta_y \\ w & \Delta y \end{pmatrix} = \begin{pmatrix} & D \\ w & C \end{pmatrix} (k_{skew})$$

- Pseudoinvert the response matrix to calculate the skew corrections to be applied from the BPM readings.
- If BPM resolution is present:
 - Apply directly to C matrix.
 - Experimentally dispersion is measured as $D_y = \frac{\Delta y}{\Delta(\frac{\Delta E}{E})}$ then $\sigma_{D_y} = f(\frac{\Delta E}{E})$

Assume an energy scan equal ±8 times the beam energy spread (as in ATF DR): 16e-3

Scan of the algorithm weight

$$\begin{pmatrix} & \Delta \eta_y \\ & \Delta y \end{pmatrix} = \begin{pmatrix} & D \\ & C \end{pmatrix} (k_{skew})$$

• 25 seeds per weight value

Chosen w = 2.1

because lattice most sensible to QV

Scan of the algorithm weight

$$\begin{pmatrix} & \Delta \eta_y \\ \ddots & \Delta y \end{pmatrix} = \begin{pmatrix} & D \\ w & C \end{pmatrix} (k_{skew})$$

1 seed distribution

Max skew strenght over 200 seeds

- 45 μm for QV
- 345 μrad for QR
- 450 μrad for DR
- 195 μm for SV

Max pole tip field = 0.03 T (for a 20mm aperture)

Example of correction

1 seed

 $QV(rms) = 45 \mu m$

 $QR(rms) = 345 \mu rad$

 $DR(rms) = 495 \mu rad$

 $SV(rms) = 195 \mu m$

(tolerance values, next slides)

Overview – Tuning algorithm

Low emittance tuning simulations

- Nominal lattice with PDR beam
- Equilibrium emittance
- Feed misalignments
- H&V CO correction
- Coupling and Dispersion correction
- RF Matching
- Chromaticity correction
- Measure equilibrium emittance

1 RF cavity situated just after a LSS

Two sextupole families in TME cells, LMDIF algorithm

Target $\rightarrow \varepsilon_y < 1 \ pm \cdot rad$

$$\Delta Y_{RMS}(95\% \ \varepsilon_y < 1pm \cdot rad) = 45\mu m$$

QR – Results

$$\Delta\theta_{RMS}(95\% \ \varepsilon_{y} < 1pm \cdot rad) = 345\mu rad$$

DR – Results

$$\Delta \theta_{RMS} (95\% \ \varepsilon_{y} < 1pm \cdot rad) = 450 \mu rad$$

SV – Results

$$\Delta Y_{RMS}(95\% \, \varepsilon_y < 1pm \cdot rad) = 195\mu m$$

Analytical predictions

Contribution of different emittance growth sources, for RMS $45\mu m$ (QV), $345 \mu rad$ (QR), $195\mu m$ (SV), $450 \mu rad$ (DR).

Following SLAC-PUB-4937 [T. Raubenheimer]

Adding BPM resolution

- Feed all misalignments together at found tolerances multipled by a factor.
- Scan this factor from 0 to 1 (for 200 seeds) and calculate the tolerance to BPM resolution as previously
- Choose a compromise between BPM resolution and QV misaligment (the tightest one)

Tolerances $\left(95\%\ arepsilon_{\mathcal{Y}} < 1pm \cdot rad ight)$				
Quadrupole Vertical Offset	18	μm		
Quadrupole Roll	138	μrad		
Dipole Roll	180	μrad		
Sextupole Vertical Offset	78	μm		
BPM resolution	200	nm		

Dynamic Aperture

 Dynamic aperture: Region of the transverse space where tracked particles survive a given number of turns (1056 here).

No error

DA: 10 σ_x 80 σ_y

At injection: $\sigma = 330$

 $\sigma_x = 330 \mu m$ $\sigma_y = 34 \mu m$

200 seeds

QV(rms) = 18 μ m QR(rms) = 138 μ rad DR(rms) = 180 μ rad SV(rms) = 78 μ m

No BPM resolution

DA (95% of lattices):

 $>5 \sigma_x$ $>40 \sigma_v$ 200 seeds

 $QV(rms) = 18 \mu m$

 $QR(rms) = 138 \mu rad$

DR(rms) = 180 μ rad

 $SV(rms) = 78 \mu m$

BPM resolution = 200nm

DA (95% of lattices):

 $>5 \hat{\sigma}_{x}$

 $>40 \sigma_y$

Impact of Synchrotron Radiation in DA

Typically in a DR, radiation effects are slow compared to revolution frequency.

In CLIC DR:

Revolution period $T_0 = 1.4 \,\mu s$ Horizontal damping time $\tau = 2 \,m s$ One damping time is 1400 turns

Simplified simulations:

To avoid going into MADX tracking code:

Perform 1-turn tracking using exit coordinates as an input of next 1-turn tracking.

$$\varepsilon(t) = \varepsilon_0 e^{-2^{t}/\tau}$$

$$x \propto \sqrt{\varepsilon} \to \frac{x_2}{x_1} \sim \sqrt{e^{-2^{T_0}/\tau}} = 0.999303$$

Multiply position and angle by a damping factor at the end of each whole turn.

Since MADX needs to reload the tracking environment, the simulations become extremely slow and takes near a factor 1056 (number of turns) in running time. Lower the factor by taking the non SR DA and tracking from it.

Impact of Synchrotron Radiation in DA

Typically in a DR, radiation effects are slow compared to revolution frequency.

In CLIC DR:

Revolution period
$$T_0 = 1.4 \ \mu s$$

Horizontal damping time $\tau = 2 \ ms$

One damping time is 1400 turns

Simplified simulations:

No difference in DA at least in the spacing of scanned initial positions $(0.6\sigma_x$ and $6.5\sigma_y$):

Maximum difference in DA: 8%

- Frequency Map: Evolution of the tune of particles during the acceleration as a function of the initial offset.
- · No misalignments included.
- Color code: Diffusion parameter.

$$D = \log \left(\sqrt{|\nu_{x,1} - \nu_{x,2}|^2 + |\nu_{y,1} - \nu_{y,2}|^2} \right)$$

- A low emittance tuning to recover the nominal vertical emittance has been defined.
- Tolerances to main magnet misalignments have been found and are feasible.

Tolerances $\left(95\%\ arepsilon_{y} < 1pm \cdot rad ight)$				
Quadrupole Vertical Offset	18	μm		
Quadrupole Roll	138	μrad		
Dipole Roll	180	μrad		
Sextupole Vertical Offset	78	μm		
BPM resolution	200	nm		

- The Dynamic Aperture accommodates 5 σ_x .
- Multipole errors will be included (simulations ongoing).
- Additional sextupole families or octupoles could be installed to ameliorate the DA.

Thank you for your attention!

Table 3.3: Parameters required at the exit of the low energy linac and before injection to the pre-damping rings

Injected parameters	e ⁻	e ⁺
Bunch population [109]	4.3	6.6
r.m.s. Bunch length [mm]	4	5.4
r.m.s. Energy spread [%]	1	4.5
Hor., Ver. Norm. emittance [nm]	100×10^{3}	7×10^{6}

Table 3.4: Parameters required at the extraction of the damping rings

Extracted parameters	e^-/e^+
Bunch population [109]	4.1
Bunch spacing [ns]	0.5
Number of bunches/train	312
Number of trains	1
Repetition rate [Hz]	50
Normalized horizontal emittance [nm]	500
Normalized vertical emittance [nm]	5
Normalized longitudinal emittance [keV.m]	6

Table 3.5: CLIC PDR injected beam parameters (after injection and capture losses) [32] and required extracted parameters.

Parameters	Injected		Extracted	
	e^{-}	e^+		
Bunch population [109]	4.3	4.3	4.3	
r.m.s. bunch length [mm]	4	5.4	10	
r.m.s. energy spread [%]	1	0.6	0.5	
Long. emittance [keV.m]	114	93	143	
Hor. Norm. emittance [μm]	100	7×10^{3}	63	
Ver. Norm. emittance [μm]	100	7×10^{3}	1.5	

Table 3.6: Design parameters for the PDRs

Parameter, Symbol [Unit]	2 GHz	1 GHz
Energy, E [GeV]	2.	86
Circumference, C [m]	389	0.15
Bunch population, N [109]	4	.3
Basic cell type in the arc/LSS	TME/	FODO
Number of dipoles, N _d	3	8
Dipole Field, B_0 [T]	1	.2
Horizontal and vertical tune, (Q_x,Q_y)	(16.39	,12.26)
Horizontal and vertical chromaticity, (ξ_x, ξ_y)	(-19.0)	,-22.9)
Number of wigglers, N _w	3	6
Wiggler peak field, B_w [T]	1	.9
Wiggler length, Lw [m]	3	
Wiggler period, λ_w [cm]	30	
Norm. equil. horizontal emittance, $\gamma \varepsilon_{x0}[\mu m]$	54	
Hor., vert. and long. damping time, (τ_x, τ_y, τ_l) [ms]	(2.7,2.	7,1.35)
Momentum compaction factor, α_c [10 ⁻³]	3	.7
Energy loss/turn, U [MeV]	2	.8
Equil. energy spread (r.m.s.), σ _δ [%]	0	.1
RF Voltage, V_{RF} [MV]	1	0
Synchrotron tune, Q_s	0.071	0.051
Bunches per train, n _b	312	156
Bunch spacing, τ _b [ns]	0.5	1
RF acceptance, ε _{RF} [%]	1.2	1.7
Harmonic number, h	2596	1298
Equil. bunch length (r.m.s.), σ_s [mm]	3.2	4.6

PDR

Table 3.8: Design parameters for the main DRs.

Parameters, Symbol [Unit]	2 GHz	1 GHz	
Energy, E [GeV]	2.86		
Circumference, C [m]	427.5		
Bunch population, N [10 ⁹]	4	.1	
Basic cell type in the arc/LSS	TME/	FODO	
Number of dipoles, $N_{\rm d}$	10	00	
Dipole Field, B_0 [T]	1	.0	
Norm. gradient in dipole [m ⁻²]	-1	.1	
Horizontal and vertical tune, (Q_x,Q_y)	(48.35	,10.40)	
Horizontal and vertical chromaticity, (ξ_x, ξ_y)	(-115	5,-85)	
Number of wigglers, $N_{\rm w}$	5	2	
Wiggler peak field, $B_{\rm w}$ [T]	2	.5	
Wiggler length, $L_{\rm w}$ [m]		2	
Wiggler period, $\lambda_{\rm w}$ [cm]	5		
Hor., vert. and long. damping time, (τ_x, τ_y, τ_l) [ms]	(2.0,2.0,1.0)		
Momentum compaction factor, α_c [10 ⁻⁴]	1.3		
Energy loss/turn, U [MeV]	4.0		
Norm. horizontal emittance, $\gamma \varepsilon_x [\mu m]$	472	456	
Norm. vertical emittance, $\gamma \varepsilon_y[\mu m]$	4.8	4.8	
Energy spread (r.m.s.), σ_{δ} [%]	0.1	0.1	
Bunch length (r.m.s.), σ_s [mm]	1.6	1.8	
Longitudinal emittance, ε_l [keVm]	5.3	6.0	
IBS growth factors hor./ver./long.	1.5/1.1/1.2 1.5/1.1/1.2		
RF Voltage, V _{RF} [MV]	4.5 5.1		
Stationary phase [°]	62 51		
Synchrotron tune, Q_s	0.0065 0.0057		
Bunches per train, n_b	312 156		
Bunch spacing, τ_b [ns]	0.5		
RF acceptance, ε_{RF} [%]	1.0 2.4		
Harmonic number, h	2851 1425		

Table 3.10: CLIC DR parameters relevant to RF

Parameter	DR @ 1 GHz	DR @ 2GHz	
Circumference [m]	427.5		
Energy [GeV]	2.	86	
Mom. compaction factor	1.3×10^{-4}		
Energy loss per turn [MeV]	3.98		
Energy spread (r.m.s.) [%]	0.1	0.1	
Bunch length (r.m.s.) [mm]	1.6	1.8	
Longitudinal emittance [keVm]	5.3 6.0		
RF voltage [MV]	5.1 4.5		
RF stationary phase [o]	62 51		
Peak/Average current [A]	0.66/0.15 1.3/0.13		
Peak/Average power [MW]	2.8/0.6	5.5/0.6	

DR

Table 3.9: A list of the DR main magnets including CLIC DRs

Type	Location	Length [m]	Number	Families	Pole tip field [T]	Full aperture H/V [mm]
Dipoles	Arc DS-BM	0.58	96 4	1	0.97	80/20
	Arc	0.20	376	2	1.0	
Quadrupoles	LSS	0.20	28 + 26	2		20/20
Quadrupoles	DS-BM	0.20	24	12	1.0	
	DS-BM	0.31	4	2		
Sextupoles	Arc	0.15	188 + 94	2	0.5	20/20
Wigglers	LSS	2.00	52	1	2.5	80/13

 Dynamic aperture: Region of the transverse space where tracked particles survive a given number of turns (1056 here).

No error

DA:

10 σ_x

80 σ_y

At injection:

$$\sigma_x = 330 \mu m$$
 $\sigma_v = 34 \mu m$

200 seeds

 $QV(rms) = 45 \mu m$

 $QR(rms) = 345 \mu rad$

 $DR(rms) = 450 \mu rad$

 $SV(rms) = 195 \mu m$

No BPM resolution

DA (mean):

 $3 \sigma_{x}$

18 σ_v

200 seeds

 $QV(rms) = 18 \mu m$

 $QR(rms) = 138 \mu rad$

 $DR(rms) = 180 \mu rad$

 $SV(rms) = 78 \mu m$

BPM resolution = 200nm

DA (95% of lattices):

 $>5 \sigma_{\rm x}$

 $>40 \sigma_{\rm v}$