### CLIC 2 beam tuning status

#### Jochem Snuverink 29/01/15







#### Outline

- 2 beam tuning status
- Traditional final focus

### CLIC: 1 vs 2 beam tuning

- Most efforts are on "1 beam tuning"
  - Optimise one BDS beamline from static errors
  - Collide beam with "itself" to measure luminosity
  - CPU-less intensive
  - Two methods
- 2 beam tuning will be at least twice as long (except for BBA)
  - How much longer?
  - Luminosity measurement less precise for lower luminosity
  - Additional luminosity loss is expected as self-collision is often optimal
  - After BBA, the beams need to be aligned wrt each other
    - Additional constraint on BBA
    - Final Doublets alignment of both lines needs to be good enough

#### Beam tuning - errors

- Misalignment in two planes:
  - 10 µm std normal distribution (CLIC prealignment) for all magnets
- BPM resolution 10 nm

# Method 1: Luminosity optimisation method

- Large optimisation with simplex method
- Move all elements of the Final Focus system
  - 2 iterations
- Can be combined with sextupole knobs afterwards
- B. Dalena et al.: http://prst-ab.aps.org/abstract/PRSTAB/v15/i5/e051006

# Method 2: "BBA" method

- 1. Multipoles off, Beam Based Alignment
  - 1. 1-1 correction
  - 2. "Target Dispersion Steering" (DFS-like method)
- 2. Multipole shunting:
  - 1. vary position to centre the multipoles
- 3. Multipole knobs
- 4. Target Dispersion Steering
- 5. Multipole knobs
  - A. Latina, P. Raimondi:

http://accelconf.web.cern.ch/AccelConf/LINAC2010/papers/mop026.pdf

#### Results CDR



- Goal: 90% of machines to reach 110% luminosity
- Remaining 10% for dynamic imperfections
- 16,000 lumi. meas. for method 1
- 2,000 for method 2

#### **BBA + Knobs at 3 TeV**



- Optimization still in progress
- -Results from 5 iterations
- →Next: apply Simplex
- We can see improvements through the five iterations

### Strategy

- Apply current 1 beam tuning with the current setup for two beams
  - Beam based alignment (ala Latina-Raimondi)
  - Sextupole knobs
    - Including automatic centering of beams ("almost ideal IP feedback")
       for now to speed up tuning
    - Alternate beamlines after each knob
  - Add additional methods from ILC experience (TODO)
    - Quadrupole shunting
    - Add mover minimisation in BBA
    - Higher order knobs corrections

### Tuning

- 100 seeds (200 machines) taken and BBA applied
- Successful BBA seeds taken and one round (crude) of sextupole knobs was performed
  - Not all seeds make progress or converge
- Best seeds reach about 60% of nominal luminosity so far
- 2<sup>nd</sup> and further iterations with finer range to be done
  - Seems essential from ILC experience

#### Traditional Final Focus

- Two separate sections for chromaticity correction
- Lattice by Hector Garcia, see e.g. his talk at CLIC WS 2014
- Relatively simple system for design and analysis



#### Traditional Final Focus

| Parameter         | Unit                             | Traditional            | Local                  |
|-------------------|----------------------------------|------------------------|------------------------|
| Length            | m                                | 1460                   | 450                    |
| Total Lumi        | cm <sup>-2</sup> s <sup>-1</sup> | 7.5 * 10 <sup>34</sup> | 7.8 * 10 <sup>34</sup> |
| Peak Lumi<br>(1%) | cm <sup>-2</sup> s <sup>-1</sup> | 2.4 * 10 <sup>34</sup> | 2.4 * 10 <sup>34</sup> |

Optimised lattice achieves similar luminosity as local scheme



# Tuning results 1 beam BBA+knobs 1 iteration



Traditional Final Focus seems more easy to tune than local scheme, also after optimisation

### Traditional FF - 2 beam tuning

- Logical to try 2 beam tuning to traditional scheme first
  - Compare with local scheme
  - Sorry no results for this yet
- In addition, with help of Hector 2<sup>nd</sup> and 3<sup>rd</sup> iteration of 1 beam tuning is planned for the traditional scheme
- In parallel do add a 2<sup>nd</sup> and 3<sup>rd</sup> iteration to 2 beam tuning of local scheme

#### Conclusions

- Two beam tuning on local scheme underway
  - Needs more iterations
  - Individual seeds need to be looked at
- Traditional Final Focus seems easier to tune
  - Two beam tuning studies should reconfirm this

## Backup

# Old Traditional Final Focus Parameters

| Parameter [Units]                                                                          | 3  TeV  | 500 G€V  |
|--------------------------------------------------------------------------------------------|---------|----------|
| Center of mass energy $E_{\mathrm{CM}}$ , [GeV]                                            | 3000    | 500      |
| Repetition rate $f_{\text{rep}}$ , [Hz]                                                    | 50      | 50       |
| Bunch population $N_e$ [10 <sup>9</sup> ]                                                  | 3.72    | 6.8      |
| Number of bunches $n_b$                                                                    | 312     | 354      |
| Bunch separation $\Delta t_b$ , [ns]                                                       | 0.5     | 0.5      |
| Accelerating gradient $G$ , [MV/m]                                                         | 100     | 80       |
| Bunch length $\sigma_z$ , $[\mu m]$                                                        | 44      | 72       |
| IP beam size $\sigma_x^*/\sigma_y^*$ , [nm]                                                | 40/1    | 200/2.26 |
| Beta function (IP) $\beta_x^*/\beta_y^*$ , [mm]                                            | 10/0.07 | 8/0.1    |
| Norm. emittance (IP) $\epsilon_x/\epsilon_y$ , [nm]                                        | 660/20  | 2400/25  |
| Energy spread $\sigma_{\delta}$ , [%]                                                      | 1.0     | 1.0      |
| Luminosity $\mathcal{L}_{\mathrm{T}}$ [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 5.9     | 2.3      |
| Power consumption $P_{\text{wall}}$ , [MW]                                                 | 589     | 272      |
| Site length, [km]                                                                          | 48.3    | 13.0     |

**Hector Garcia**