

Beam Halo Measurement using Diamond Sensor at ATF2

S. Liu, P. Bambade, F. Bogard, P. Cornebise, V. Kubytskyi, C. Sylvia, A. Faus-Golfe, N. Fuster-Martínez, T. Tauchi, N. Terunuma

Issues of beam halo @ATF2

Main Goals for 2014 Run @ ATF2

Characterization of Diamond Sensor

Beam Halo Measurements

Conclusions and Prospects

Motivations

- ▶ Beam halo transverse distribution unknown → investigate halo model
- ➤ Probe Compton recoil electron (prepare future investigations of higher order contribution to Compton process)

Issues of Beam Halo @ATF2

Analytical estimation of horizontal beam halo distribution with different vacuum pressu

Diamond Sensor (DS) Characteristics

ADVANTAGES

- Large band-gap ⇒ low leakage current
- High breakdown field
- High mobility ⇒ Fast pulse (several ns)
- Large thermal conductivity
- High binding energy ⇒ Radiation hardness

Charge generated by 1 MIP for 500 μm diamond (with 100% CCE): 2.88 fC

4.5mm X 4.5mm X 500μm

Dynamic range: 1 -> 10⁸ e⁻

Averaged signal from 90Sr @400V

		Total N	Min. \sim Max. N/mm 2 @ DS	Charge signal/mm ²	
	Beam	10 ¹⁰	6.16×10 ⁸	1.6887μC	
	Halo	10 ⁷	1.14×10 ⁴ ~2.24×10 ⁴	31.236pC∼61.376pC	
	Compton	28340	30~520	<mark>82.2fC</mark> ∼1.4284pC	

Wire Scanner

Signal: Bremsstrahlung photons

Dynamic range limited by:

- Background level
- 14 bit ADC counts
- PMT high voltage

Background sources:

- Beam halo hitting the beam pipe
- Beam halo hitting another wire

Data Taking:

- Difficult to combine data
- Difficult to avoid beam position jitter

Diamond Sensor

Signal: Ionized e- hole pairs

Dynamic range:

 \Rightarrow 1 \sim >10⁸ e⁻ (adding amplifier or attenuator)

Possible background:

- Beam halo hitting B-Dump bending magnet
- ⇒ can be collimated by collimators upstream

-> N.Fuster's talk

- Back-scattered neutrons from dump
- ⇒ slow neutrons can be separated in time
- Bremsstrahlung photons
- ⇒ can be neglected?

Data Taking:

- Different channel for beam core and halo
 - ⇒ possible to do overall scan

In Vacuum Diamond Sensor @ATF2

- The first Diamond Sensor is installed <u>horizontally</u> at ATF2 in <u>Nov. 2014</u>
- A second unit will be installed <u>vertically</u> in <u>2015</u> for vertical halo measurements

Data Acquisition System

@ Post-IP

@ Control room

PC

Data acquisition using Matlab

Ethernet 3

Tests of the system were done with beam at PHIL (photoinjector beamline at LAL) in Oct. 2014 before installation at ATF2

Main Goal for 2014 Run

Commission and characterize DS November Run (5 shifts)

- Pick-up study
- Study of correlation between DS, ICT and BPM data
- Beam core and halo scan with different HV
- Background study (background signal from cables observed)
- Vertical alignment (VA) applied
- Tests of auto vertical range setting

Initial measurement of horizontal beam halo distribution

December Run (6 shifts)

- Charge Collection Efficiency (CCE) study with attenuators(with different HV)
- Beam halo scan for different beam intensity (1.1*10⁹,2.5*10⁹,4.9*10⁹)
- Beam halo scan for different beam optics
- Study the background from cables
- Study the cut of beam halo by upstream apertures
- First try to measure Compton recoil electrons

Characterization of Diamond Sensor (DS)

- Lower limit of DS: pick-up study
- Higher limit of DS: linearity study

Signal Pick-up Study

Signal pick-up by the strip lines on the PCB was observed as the PCB is not shielded

Pick-up scan w/o applying HV on DS

Charge Collection Efficiency

- Charge collection efficiency (CCE) depends on the "effective" bias voltage (EBS) on DS
- EBS = applied HV voltage drop on the 50Ω

Typical life time of e⁻h pairs:

 $\tau_{e,h} \approx 40 \text{ ns}$

Linearity of DS Response

- Response is linear when the voltage drop is not significant
- In the beam core we observed an obvious non-linear response due to large voltage drop

Beam Halo Measurements

- Beam core scan and beam core distributions
 - Beam size verification
- Beam halo scan and beam halo distributions

Waveforms and Integrated Charge during Scan

- The beam core is scanned by DS by applying low voltage
- · The charge of waveform at each position is integrated to get the distribution

Beam Core Scan

Before Alignment

After Alignment

-20 [nC] Charge, 001-100 -140 -160 -180 <u></u>50 70 Motor position, [mm] Charge, [nC] -120 -140 -160 60 68 Motor position, [mm]

We move the AQD0FF magnet mover vertically to find the max. charge collected on DS

Beam Size Verification

Vertical beam size is extrapolated from the Post-IP WS measured beam size

	BX10BY0.5 (12-12-14)		
	σ_{x} (m)	σ _y (m)	
Post-IP WS calculated	1.564e-04	2.892e-04	
Post-IP WS measured	2.174e-04	5.57e-04	
DS calculated	1.394e-03	1.787e-03	
DS expected	1.938e-03	3.442e-03	
DS measured (CH2)	1.498e-03	Non	

2014/12/18 - Day Shift CH1/0.0316:-400V 10³ $\sigma = 1.7029$ CH1:-400V CH4/0.0316:-400V Present Dynamic 10² $\sigma = 1.6084$ Range: **10**⁶ CH4:-400V Gauss fit 10¹ **Preliminary** Charge, [nC] 0 0 0 Low Energy (LE) **High Energy (HE)** 10⁻² 65mm 10⁻⁴ 20 30 -40 -30 -20 -10 10 40 **Number of Sigmas**

Beam Halo Scan

Issue with cables

Before fixing

After fixing

Beam Halo Distribution for Different Beam Intensity

 No change in horizontal beam halo distribution was observed

-> We expect to see the changes on the vertical beam halo distribution

Measurements were done for BX10BY0.5 optics with $N=1.1*10^9,2.5*10^9,4.9*10^9$

After Normalization

Beam Halo Distribution for Different Optics

- No obvious change observed in the horizontal beam halo distribution between BX10BY1 and BX10BY0.5 optics
- For BX100BY1000 optics, beam halo seems less than other optics -> binning is needed

Conclusions and Prospects

In Nov. and Dec. Run at ATF2 we performed:

- ✓ Studies to characterize the in vacuum DS performance
- ✓ Initial measurements of horizontal beam halo distribution
- We can use DS to scan both the beam core and beam halo with a dynamic range of 10⁶ (from 5*10² to 5*10⁸ e⁻) with a 30dB attenuator -> saturation of charge collection will be studied in detail-> improvements on the PCB (shielding etc.) will further improve the dynamic range
- Horizontal beam halo distribution was measured -> will be compared with the measurements done in 2013 using the Post-IP WS -> will be useful to see effects from collimators soon to be installed
- Asymmetry of horizontal beam halo distribution was observed -> origin of this asymmetry will be studied
- Dependence on beam intensity and beam optics will be checked for the vertical beam halo distribution using the 2nd unit of DS -> will be installed in April 2015
- Further study to check the possibility of measuring Compton recoil electrons is ongoing

Thank you!

Back up ...

Asymmetry of Horizontal distribution

We can see the asymmetry of horizontal beam halo distribution from the data taken in 2007

Asymmetry of Horizontal distribution

This asymmetry was observed also in the data taken in 2013 using Post-IP WS and in 2014 using DS

LE side

Post-IP WS 16-April-2013

Diamond sensor 18-Dec-2014

HE side

Typical life time of e⁻h pairs^[1]: $\tau_{e,h} \approx 40$ ns

Signal FWHM distribution

Hecht formula:
$$CCE^{[2]} = \frac{\tau_{e,h}}{t_{tr}} (1 - e^{-\frac{t_{tr}}{\tau_{e,h}}}) = (\mu \tau_{e,h} V/d^2)[1 - e^{-d^2/\mu \tau_{e,h} V}]$$

Information from ICT and BPMs

- ICT correction and beam position jitter (4-6 μm) can be taken into account in data analysis
- We read the data from Epics via SSH, but it is possible to use Labca to get data directly from Matlab
- In the future we can also input data from DS to the Epics system

Charge Collection Efficiency

Beam Core Scan

Scan direction

- Signal at each channel is a convolution of beam (Gaussian) with strip (rectangular shape)
- Fit function: F(d1,a1,b1,s1) = d1+a1*(erf(((x+0.75-b1)/(sqrt(2)*s1)))-erf(((x-0.75-b1)/(sqrt(2)*s1))))

FFT of Pick-up

Asymmetry in frequency domain observed

Background from cables

Expected signal (400V)

Data taken with 30dB attenuator Total e- number: 4.8*109

	CH1	CH2	СНЗ	CH4
Measured σ_{x}	1.70 mm	1.49 mm	1.53 mm	1.61 mm
Ratio of collected e-	13.34%	1.04%	1.02%	14.07%
Expected full charge (3fC/MIP)	1.88μC	147.21nC	143.68nC	1.98μC
Max. charge collected	442.72nC	151.79nC	158.11nC	600.8nC
Corresponding CCE	23.55%	101%	101%	30.35%

Scan_Run60_12-12-2014_143616_core_400V

COMPTON RECOIL ELECTRONS STUDY

- Perform simulations in CAIN and Mad-X for different optics
- Compare the estimated signal level with the background/pick-up signal level

