

Klystron simulations: Review/comparison of existing tools

27/1/15 Dr Chris Lingwood

With thanks to:

C. Marelli, I. Syratchev, A. Baikov, I. Guzilov, F. Peauger, Q. Vuillemin, B. Delana,

P. Ferguson, M. Read

Introduction

- Choice of code depends on what you want to achieve
 - Design codes (quick, various assumptions)
 - Detailed evaluation codes (slow, detailed simulation)
- Many approaches
 - Design
 - Analytical Small Signal
 - Disk/Ring
 - Discrete Model
 - Reduced PIC
 - Detailed
 - Full PIC
- Many codes!

Codes (14)

In no particular order:

Disk/Ring

- AJDisk
- Klys4.5
- Dev5

Discrete Model

- Klypwin
- Tesla

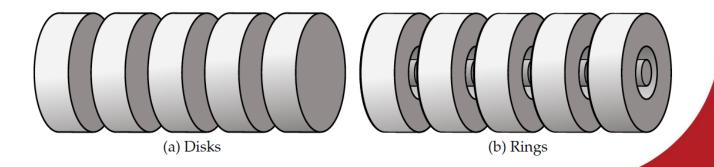
Reduced PIC

- Klys2d
- KLSC
- FCI

PIC

- VSim
- WARP
- MAFIA
- CST PS
- GdfidL
- Magic

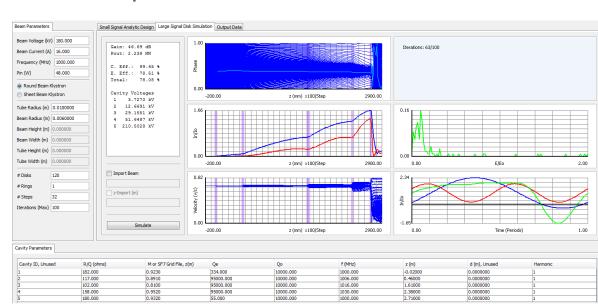
Analytical Small Signal



- Solution of space charge waves on a beam
- Directly obtain solution
- Make assumptions of linearity which are very wrong indeed for large signal
- Very fast way of getting the wrong answer

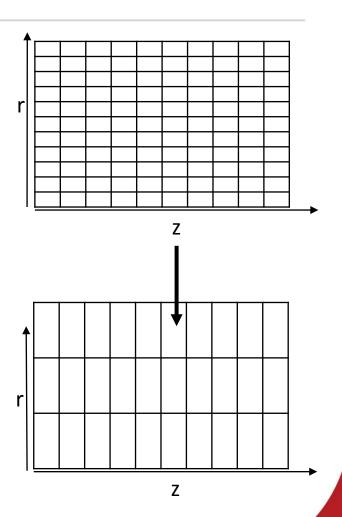
Disk/Ring Models

- Model the beam as a series of disks or rings
- Port approximation of cavities
- Solve the cavity fields iteratively with the beam
- Quite fast
- Non-linear


Space Charge - Green's functions approach

- Charge is represented as a delta disk
 - Integrate Greens function over two delta function disks to calculate the force between them
- In a close encounter (overtake) between disks the space charge forces
 - become infinite (just large for a truncated series)
 - don't take into account the reduction in force as disks "merge"
- Charge to charge solution for forces (calculations escalate (very) quickly) limits resolution

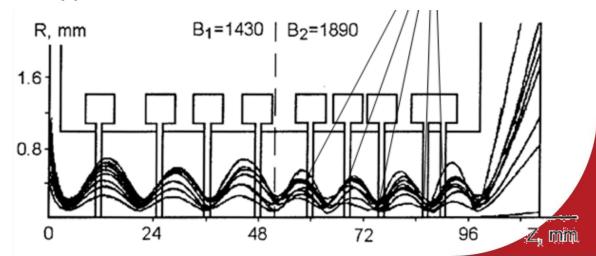
AJDisk - SLAC


- Basic Green's function approach (doesn't solve overlap issues)
 - The higher the efficiency the more overlap...
- No radial movement, no focussing
- Field profile Gaussian in z, radially constant
- Multiple output gap but no coupled cavities
- Freely available

Lancaster University

Space Charge - Hockney Method

- Deposit charges on a mesh
- Fourier analysis in z and cyclically reduce in r down to 3 steps
- Apply more boundary conditions and solve to get potential matrix
- Faster than greens function approaches (not charge to charge)
- Based on Fourier analysis has no issue with close encounter problem



Klys4.5

thanks to I Guzilov

- Hockney Method for space charge
- Radial movement, PPM or Solenoid Focusing
- Numerical solution of real cavity fields
- Double gap cavities
- Single and multibeam
- Input and output ladder-type filters

Dev5.1

thanks to I. Guzilov

- Hockney method for space charge
- Cavity model extends to swift calculation of coupled cavities using 6-Pole method
 - CCTWT + Klystrons + Hybrids
- Radial Movement PWM or Solenoid
- Electrostatic approximation for longitudinal field profile
- Input output ladder filters

	1	2	3	4	5	Efficiency
AJDisk	0.021389	0.070556	0.167222	0.288333	1.17	78.26
Dev5.1						65.16
Dev5.1 (retune)	0,02012	0,06843	0,16382	0,2966	1,14869	76.41
Klys4.5	0.02010	0.06728	0.13366	0.21853	1.05347	65.08
Klys4.5 (retune)	0.02010	0.06728	0.16469	0,29652	1.14389	76.74

Cavity voltage normalised to beam voltage

Retuning is cheating

Discrete Model

- Other ways of modelling space charge fields (breaking down into sums of harmonics)
- Fewer larger steps (in z rather than t)
- Quicker

TESLA - NRL

thanks to M. Read

- Based on the telegraphers equations
 - Space charge field in beampipe represented by modes in local cross section
- Use a slow timescale (of charge density change) approximation (update time scale is fill time not high frequency period)
- Radial Movement PWM or Solenoid
- Single and Multiple beam
- Cavity Fields flat, Guassian or arbitrary
- Pretty well tested

Klypwin

A. Baikov

- Discrete-analytic model of a beam
 - Derived using Frozen Beam Approximation from a general solution for small signal. Assumes:
 - Steps in z are small
 - bunching rate is slow (compared to beam velocity)
 - Models potential field as sum of harmonics
 - Predicts time of arrival for each particle (iterated individually)
- Quite new

Discrete Models Comparison

	1	2	3	4	5	Efficiency
AJDisk	0.021389	0.070556	0.167222	0.288333	1.17	78.26
Klypwin						77.53
TESLA	0.025922	0.080511	0.13365	0.271067	1.094506	71

Cavity voltage normalised to beam voltage

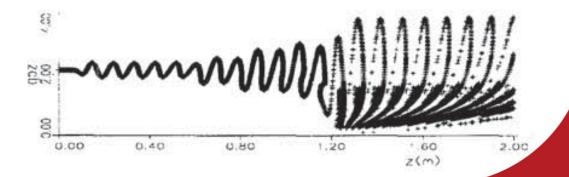
Reduced PIC

- PIC model for beam
 - Rather than point to point space charge models deposits charge onto a mesh to resolve the forces
 - More efficient and allows...
- Higher resolution on beam
- 2.5D
- Normally approximated cavities for efficiency (port approximation)
- No monotron or other HOM based issues
- Steady state

Klys2D – Thales

Lancaster University

thanks to Q. Vuillemin


- Radial movement, Solenoid and PPM focussing
- Well benchmarked
- Quite quick
- Bouncing electrons in output gap observed for Chiara's klystron

KLSC - CCR

thanks to P. Ferguson

- Cavities solved by iterating to find self consistent cavity field
 - Different methods for input and gain cavities for stability
 - Gain cavities prone to voltage magnitude errors
- Uses SUPERFISH cavity fields
- Supports coupled output cavities

FCI - Japan

- A bit of an oddity
- PIC, but ring based
- Cavity voltages found in two ways:
 - Small signal regime calculated directly for steady state (input idlers) observed idlers can be wrong with simple iterative solution (for speed!)
 - Large signal (non linear) iterated

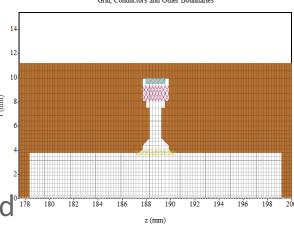
Reduced PIC Comparison

	1	2	3	4	5	Efficiency
AJDisk	0.021389	0.070556	0.167222	0.288333	1.17	78.26
Klys2D	0.0202	0.0741	0.1790	0.3158	1.1261	72.00
FCI						?
KLSC						75

PIC Codes

- Deposit charges onto a grid
- Normal FDTD Yee algorithm using currents
- Fully self consistent
- High beam resolution
- Information may go backwards
- Full geometry of tube
 - Full cavity model with high order modes
- WILLFULLY transient
- Can be used for prediction of monotron, multipactor, instabilities...
- SLOW

Variations in approach

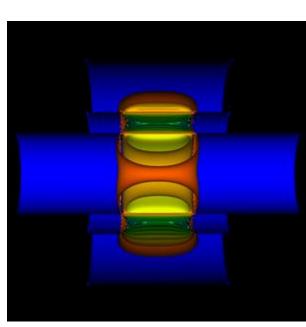

- Cavity losses (Q is important!)
- External coupling
- Cut cells (PBA, deymittra...) or square mesh
- 2D or 3D (often both)

MAGIC

thanks to B. Delana, F Peauger

- Standard, well tested, trusted, in some ways dated/basic
 - GPU+cutcells imminent (trust?)
- Surface losses calculated
- Waveguide ports for inputs and outputs
- Square mesh
- Confidence in precise cavity geometry limited
 - Useful retuning tools to get right interaction
- Arbitrary Magnetic Field
- Relatively easy to get started with examples
- Is parallel, but anecdotally doesn't scale very far
- Pretty good in 2D

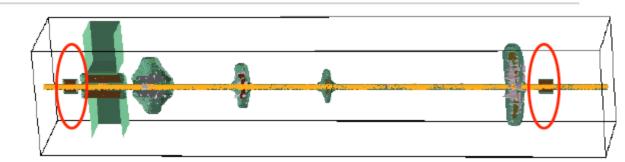
MAFIA -> CST PS



- Mafia -> CST PS (loss of 2D)
- PBA (cut cells)
- External coupling
 - Discrete ports (apply a voltage across a gap)
 - Waveguide port
- Wall losses calculated
- GPU capability
- Good scaling (improving)
- Very easy to setup
- Good secondary emission model
- Having some numerical issues

VSim (TechX)

- Demonstrated scaling to 100s cores on clusters
 - huge meshes, lots of particles
- Physical wall losses can be calculated
 - Also dummy loads for speed
- Waveguide port-like coupling
- Very flexible (almost arbitrary algorithms)
- Fiddly to setup
- Potential for very high resolution
- Lancaster has good experience of complex multipactor sims



GdfidL

thanks to C. Marrelli, R. Wegner

No surface losses

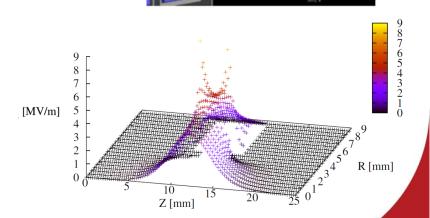
- Cavity tuners
 - Change magnetic permeability for frequency
 - Change magnetic conductivity for losses
- Similar technique used to add losses for beam pipe
- Waveguide ports
- Scaling was an issue (could be resolved)
- Not great voltage agreement with AJDisk for 4th-5th cavities (different tube)
- Output cavity not attempted yet

WARP (Klystron Module 2D)

thanks to B. Delana, F Peauger

Reads AJDisk file

Input is field map based on Superfish simulations, scaled to


correct power level

Calculates cavity losses

Further development required:

- monitoring of the current
- output power calculation

Not ready yet

Comparison

	1	2	3	4	5	Efficiency
AJDisk	0.021389	0.070556	0.167222	0.288333	1.17	78.26
Dev5.1						65.16
Klys4.5	0.02010	0.06728	0.13366	0.21853	1.05347	65.08
Klypwin						77.53
TESLA	0.025922	0.080511	0.13365	0.271067	1.094506	72
Klys2D	0.0202	0.0741	0.1790	0.3158	1.1261	72.00
KLSC						75

No results from PIC simulations yet

Conclusion

- Our codes are not in good agreement!
- AJDisk is used too often because it's available rather than necessarily right, good or clever.
 - Potential for increased errors at high efficiency.
- Perhaps telling there are no results for full PIC codes yet.
 - Interesting to see if they will agree

Disk Codes

	AJDisk	Klys4.5	Dev5.1
License	Free	Restricted	Restricted
OS	Win	Win	Win
Parallel	No	No	No
Simulation 2D/3D	1.5D	2.5D	2.5D
GUI	Yes	Yes	Yes
RAM	Minimal	Minimal	Minimal
Availability	Free!	I. Guzilov	I. Guzilov

Discrete Equations

	Klypwin	Tesla
License	Restricted	Restricted
Parallel	No	No (Yes for MBK)
Simulation 2D/3D	1.5D	2.5D
GUI	Yes	Yes
RAM	Minimal	Minimal
Availability	A. Baikov	US

Reduced PIC

	Klys2D	KLSC	FCI
License	Restricted	Restricted	Restricted
Open Source	No	No	No
Parallel	No	?	No
Simulation 2D/3D	2.5D	2.5D	2.5D
GUI	Yes	?	?
RAM	Small	Small	Small
Availability	Thales	CCR	?

PIC

	CST PS	VSim	WARP	MAGIC
License	Licensed	Licensed	Free (klystron module?), Open Source	Licensed
Parallel	GPU, Multi- thread	Designed for clusters (MPI)	Yes (openMP, MPI)	Yes (licenced)
Simulation 2D/3D	3D	2D/3D	2D/3D	Yes (but separate licenses)
GUI	Yes	Yes (text)	Ish (text)	Yes (text)
RAM	Lots	Lots	Lots	Lots
Availability	Lancs, ESS, others	Lancs (256 core)	CEA	CEA, Lancs

References

- Large-Signal Klystron Simulations using KLSC, B. Carlsten
- Klystron simulation and design using the Field Charge Interaction (FCI) code, T. Shintake
- Validation of klystron development code-KLYS 4.5, A. Malykhin
- The Space-Charge Potential In A Cylindrical Tunnel, J.R.M Vaughan
- Synthesis of six-pole network simulating of coupled cavity chain characteristics in two passbands, A. V
 Konnov
- Simulation of Microwave Devices With External Cavities Using MAGY, A, Vlasov
- TESLA: Large Signal Simulation Code for Klystrons A. Vlasov
- CODE TESLA FOR MODELING AND DESIGN OF HIGH-POWER HIGH-EFFICIENCY KLYSTRONS, I.A. Chernyavskiy
- Model of electron beam transformation in a narrow tube, A. Baikov
- Frequency-domain code Dev.5.0 for analysis of coupled–cavity traveling wave tubes, klystrons and their hybrids, A Konnov
- Simulation of Conditions for the Maximal Efficiency of Decimeter Wave Klystrons, A. Baikov