



Risto Montonen<sup>1,2</sup>, Ivan Kassamakov<sup>1,2</sup>, Edward Hæggström<sup>2</sup>, and Kenneth Österberg<sup>1,2</sup>

Helsinki Institute of Physics, University of Helsinki
 Department of Physics, University of Helsinki

5 mm



### Introduction



- Accelerating Structures (AS) comprising OFE Cu disks undergo permanent thermo-mechanical deformations during assembly and RF operation.
- These deformations result in micron-level shape errors in AS.



- Sub-micron accuracy across 10 mm measurement range is required.
- Fourier Domain Short Coherence Interferometry (FDSCI) -technique





## **Design A Setup**



- Design A aims to verify micron accuracy of FDSCI method.
- LED light source (L-793SRC-E, Kingbright,  $\lambda_0 = 655$  nm,  $\Delta \lambda = 22$  nm)
- Visible range fiber optic spectrometer (HR2000, Ocean Optics, spectral resolution  $\delta\lambda = 0.44$  nm) captures a spectral interferogram.

Measurement range 
$$R_{max} = \frac{\lambda_0^2}{4n_{air}\delta\lambda}$$

Expect 240  $\mu$ m measurement range  $R_{max}$ .



## A-scan analysis



- Optical thickness (h) of the sample determined as the peak position of a Gaussian fit to the interference peak.
- In 100 A-scans, the repeatability better than 0.2 μm (2σ standard uncertainty)
- Axial resolution 0.002 µm



### **Calibration**



 FDSCI setup calibrated by comparing the optical thickness of five individual calibration samples to the certified geometric thickness.

Two plastic thickness standards (Check Line, CPS-100)

• #11441: (11 ± 1) μm

• #11442: (23 ± 1) µm



Three standard thickness cover slips (Schott, D 263 M)

#00, #0, and #1

Complementary refractive indices measured using polarometer (Horiba Jobin-Yvon, UVISEL-VASE).



# Geometric thickness of cover slips



- Scanning Electron Microscope (SEM) Hitachi S4800
- SIRA SEM S170 calibration specimen (19.7 lines/mm, 1% accuracy)



# Measurement bias and uncertainty budget

Measurement bias:  $e = h_M - h_C = h(1 + \theta_h^2/2) - H_C n(1 + \theta_H^2/2)(1 + \alpha \Delta T)$ 

Uncertainty budget for #00 cover slip sample.

| Uncertainty component             |            | Unit                                                            | Nominal<br>value | Standard uncertainty $u(x_i)$ | Sensitivity coefficient $ c_i  = \left  \frac{\partial f}{\partial x_i} \right $                        | Uncertainty contribution $u_i(y) =  c_i u(x_i)$ [µm] |  |
|-----------------------------------|------------|-----------------------------------------------------------------|------------------|-------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
| Optical thickness                 | h          | μm                                                              | 110.01           | 0.14                          | $1+\theta_h^2/2$                                                                                        | 0.14                                                 |  |
| Angular error in $h$              | $	heta_h$  | mrad                                                            | 7.0              | 4.0                           | $h	heta_h$                                                                                              | $3.1\times10^{\text{-}3}$                            |  |
| Calibrated geometric thickness    | $H_C$      | μm                                                              | 71.49            | 0.42                          | $n(1+\theta_H^2/2)(1+\alpha\Delta T)$                                                                   | 0.64                                                 |  |
| Angular error in $H_C$            | $	heta_H$  | mrad                                                            | 1.7              | 1.0                           | $H_C n\theta_H (1 + \alpha \Delta T)$                                                                   | $1.9 	imes 10^{-4}$                                  |  |
| Refractive index                  | n          | -                                                               | 1.516            | 0.016                         | $H_C(1+\theta_H^2/2)(1+\alpha\Delta T)$                                                                 | 1.1                                                  |  |
| Coefficient of thermal expansion  | α          | 10 <sup>-6</sup> K <sup>-1</sup>                                | 7.2              | 0.4                           | $H_C n(1+\theta_H^2/2)\Delta T$                                                                         | $2.7\times10^{\text{-5}}$                            |  |
| Temperature between $h$ and $H_C$ | $\Delta T$ | $^{\circ}\mathrm{C}$                                            | -0.6             | 0.8                           | $H_C n(1+\theta_H^2/2)\alpha$                                                                           | $6.4 	imes 10^{-4}$                                  |  |
| Calculated quantity               |            | Function                                                        |                  | Nominal<br>value [µm]         | Standard uncertainty $u_c(y) = \left(\sum_{i=1}^{N} u_i^2(y)\right)^{1/2} \text{ [}\mu\text{m}\text{]}$ | Expanded uncertainty $U = 2u_c(y)$ [µm]              |  |
| Measured optical thickness        | $h_M$      | $h(1+\theta_h^2/2)$                                             |                  | 110.01                        | 0.15                                                                                                    | 0.30                                                 |  |
| Calibrated optical thickness      | $h_C$      | $H_C n(1 + \theta_H^2 / 2)(1 + \alpha \Delta T)$<br>$h_M - h_C$ |                  | 108.3                         | 1.4                                                                                                     | 2.8<br>2.8                                           |  |
| Bias                              | e          |                                                                 |                  | 1.7                           | 1.4                                                                                                     |                                                      |  |



# Calibration function and 95% confidence level system uncertainty



- Calibration function  $C = (0.017r 0.1) \mu m$
- 95% confidence level system uncertainty (6.3  $\times$  10<sup>-3</sup>r + 2.4) µm (enveloped)
- Article on calibration in preparation.

# **Example copper measurement**



- Optical distance between glass slide rear surface and copper surface  $h = (60.927 \pm 0.021) \ \mu m. \ T = (20.7 \pm 0.6) \ ^{\circ}C, \ H_R = (32.5 \pm 1.7)\%.$
- Calibrated optical distance:  $h_C = h C(h) = (60.0 \pm 2.8) \, \mu m$  with 95% confidence level



# **Design B setup**

Fiber Fabry-Perot spectrometer to reach 10 mm measurement range





### **Conclusions**

- FDSCI calibrated for micron accuracy absolute distance measurements.
  - Accuracy could be enhanced using < 1‰ uncertainty dimension standards.
- FDSCI can be used to measure copper.
  - Coherence could be increased tuning the sample tilt.
  - Next the FDSCI will be tested to determine height of ultra-precisely machined steps on an OFE Cu disc.
- To reach the required 10 mm measurement range we will upgrade our setup with a fiber Fabry-Perot spectrometer.





### Calibration data set

Calibration data set. Uncertainties reported represent  $1\sigma$  standard uncertainties.

| Calibration san       | nple   | Optical thickness h [µm] | Angular error in $h$ $\theta_h$ [mrad] | Calibrated geometric thickness $H_C$ [ $\mu$ m] | Angular error in $H_C$ $\theta_H$ [mrad] | Refractive index n [-] | Coefficient of thermal expansion $\alpha \ [10^{-6} \ \mathrm{K}^{-1}]$ | Temperature between $h$ and $H_C$ $\Delta T$ [°C] |
|-----------------------|--------|--------------------------|----------------------------------------|-------------------------------------------------|------------------------------------------|------------------------|-------------------------------------------------------------------------|---------------------------------------------------|
| Check Line<br>CPS-100 | #11441 | $18.765 \pm 0.078^*$     | $7.0 \pm 4.0^{**}$                     | $11.0\pm0.6^{**}$                               | -                                        | 1.689 ± 0.061*         | -+                                                                      | $1.5 \pm 1.3^{**}$                                |
|                       | #11442 | $40.53 \pm 0.19^*$       | $7.0 \pm 4.0^{**}$                     | $23.0\pm0.6^{**}$                               | -                                        | $1.726 \pm 0.074^*$    | -+                                                                      | $1.4\pm1.3^{**}$                                  |
| Schott<br>D 263 M     | #00    | 110.01 ± 0.14*           | $7.0 \pm 4.0^{**}$                     | $71.49 \pm 0.42^*$                              | $1.7\pm1.0^{**}$                         | $1.516 \pm 0.016^*$    | $7.2 \pm 0.4^{**, ++}$                                                  | $-0.6 \pm 0.8^{**}$                               |
|                       | #0     | $157.38 \pm 0.13^*$      | $7.0 \pm 4.0^{**}$                     | $101.77 \pm 0.61^*$                             | $1.7\pm1.0^{**}$                         | $1.526 \pm 0.016^*$    | $7.2 \pm 0.4^{**, ++}$                                                  | $-3.2 \pm 0.8^{**}$                               |
|                       | #1     | $222.26 \pm 0.19^*$      | $7.0 \pm 4.0^{**}$                     | $144.15 \pm 0.87^*$                             | $1.7 \pm 1.0^{**}$                       | $1.512 \pm 0.016^*$    | $7.2 \pm 0.4^{**, ++}$                                                  | $-0.9 \pm 0.8^{**}$                               |

<sup>\*</sup>Type A uncertainty evaluation (ISO Guide to the expression of uncertainty in measurement).

<sup>\*\*</sup>Type B uncertainty evaluation, uniform distribution assumed (ISO Guide to the expression of uncertainty in measurement).

<sup>\*</sup>The specification of Check Line CPS-100 includes the thickness variation due to thermal expansion within temperature  $(21 \pm 2)$  °C.

 $<sup>^{++}\</sup>alpha$  from the datasheet of Schott D 263 M, 10% maximum variation assumed.



### **Design B**

Goal to reach 10 mm measurement range



- NIR LED (LED1550-35K42, Roithner Lasertechnik) + interferense filter (IF) (NIR01-1550/3-25, Semrock)  $\Rightarrow \Delta \lambda = 8.8$  nm centered at  $\lambda_0 = 1550$  nm
- Tunable fiber Fabry-Perot (FFP) filter (FFP-TF2, Micron Optics) combined with photodetector (PD) (PT511-2, Roithner Lasertechnik) captures the spectral interferogram.
  - 23.2 nm free spectral range (FSR) at  $\lambda_0 = 1550$  nm,  $\delta \lambda = 0.025$  nm
- Expect 20 mm axial depth range  $r_{max}$  in air.
- 1 10 mm quartz glass samples