Converging towards an **HCal** option for the new CLICdp model

Nikiforos Nikiforou CERN/PH-LCD

CLIC Workshop 2015 CERN, January 25th 2015

Introduction - Outline

- Working towards an updated simulation model for the new CLIC detector
 - Include as much detail and up to date information from optimization/engineering studies as possible/available
 - Feed back updated figures/requirements to engineering and feasibility studies
- There have been already several iterations of detector optimization, including the HCal
- Two particularly interesting issues in the case of the HCal:
 - HCal Barrel: Size (R)

 Abs. Material (W vs Fe)

 Assembly
 - Implications on coil size and requirements, overall detector size
 - HCal Endcap: Forward coverage and acceptance
 - Implications on forward region instrumentation and engineering design

HCAL BARREL OPTIMIZATION

- <u></u> $\sigma_{
 m E}/{
 m E}$ |
- These studies drive the aim for an HCal depth of $\sim 7.5 \, \lambda_{\rm I}$ at $\theta \approx 90^{\circ}$
 - Try now to constraint the Radial size of the HCal
- Right: Pandora PFA study by A. Lucaci Timoce
- Bottom: Toy (testbeam stack) calorimeter study by C. Grefe and P. Speckmeyer
 - Single π^+ (Slic)
- Hit based
- TMVA calibration
- Also compared performance of Tungsten and Steel Absorber

28/01/2015

CLIC Workshop 2015

What was Previously There

CERN

- Verified that both previous simulation models (CLIC_SID, CLIC_ILD) and reconstruction chains included HCal Barrels with $\sim 7.5 \ \lambda_{\rm I}$ at θ =90°
- Both models do not include support for the radiator or any sort of cassette for the active elements/electronics
 - Looked into more realistic scenarios
 - Studies performed using a modified version of ILD_o1_V06 model and the ILD software chain

HCAL BARREL	CLIC_ILD (SHcalSc02)	CLIC_SID		
Number Of Layers	75	75		
Number Of Sides	(8) 16	12		
Inner Radius	2058 mm	1419 mm		
Outer Radius *	3296 mm	2656.5 mm		
Z Length	4700 mm	3530 mm		
Section Phi	0.52 radians	0.52 radians		
Cell Size	30.0 mm x 30.0 mm	30.0 mm x 30.0 mm		
Layers 0 - 74				
10 mm	Tungsten	Tungsten		
5 mm (sensor)	Polystyrene	Polystyrene		
1.5 mm	Air	Air		

Modified ILD Assembly (17.5 mm per layer)

Kept ILD o1 v06 thicknesses, added cassette, removed 1 mm from Steel absorber thickness

Gain 2 mm

- In terms of material per layer and thickness per layer, a 19 mm steel absorber thickness model will basically be the same as the ILD o1 v06 model with this assembly
- For a 10 mm Tungsten HCal, it follows that we will have extra material
 - Updated calculations on next slide
- Still does not address support and assembly
 - Would more naturally fold into absorber structure in the case of Fe

- Generous 2.7 mm air gap (called "Fiber gap" in Mokka ILD driver)
- Stack on top for simplicity
- Could also accommodate some

PCB (0.7 mm) + Cu (0.1 mm) (ignore electronics)

Active Element Cassette					
Material	Thickness				
ivialeriai	mm				
Steel	1				
PCB	0.7				
Cu (etching)	0.1				
Electronics	0				
Scintillator	3				
Sum (per layer)	4.8				
#λΙ (per layer)	0.01				

Various Model Options for the HCAL Barrel

- Try variations of absorber material, thickness and number of layers resulting in depth around 7.5 λI (established from CDR studies)
- Modify ILD_o1_v06 model in Mokka
 - Set $R_{in}^{HCal}=1750$ mm, additional absorber plate at the end, 1 mm steel in **cassette**
 - 4.5 T field (constant for all variations, rest same as ILD)

									<u> </u>
Detector	# ayers	Abs Thick	Cass. Thick	Air	Total Depth	Total Thickness	Inner R	Outer Face Position	Outer Radius
		mm	mm	mm	#XI	mm	mm	mm	mm
CLIC_ILD_CDR	75	10	5*	1 5	7.42	1237.5	2058	3295.5	3341.2
CLIC_SID_CDR	/5	10	(*Scint)	1.5	7.42	1237.5	1447	2684.5	2721.7
W + cassette	75	10	4.8	2.7	7.92	1322.5	1750	3072.5	3115.1
W + cassette	70	10	4.8	2.7	7.40	1235	1750	2985	3026.4
Fe + cassette	60	19	4.8	2.7	7.55	1609	1750	3359	3405.6
Fe + cassette	70	16	4.8	2.7	7.93	1661	1750	3411	3458.3

Notice two most promising options (bold black) result in outer radii differing by $\sim\!40~\text{cm}$

Methods to Gauge HCal Performance

CERN

- Tried to gauge performance of various models:
 - Single Particle Response
 - Jet Energy Resolution (JER):
 - From total Deposited Energy in Z' o uds
 - Use AnalysePerformance (from PandoraAnalysis-v00-06)
 - From Z/W measurement ZZ o
 u
 u dd and $WW o
 u \ell ud$
 - Use m_{II} overlap estimation
 - Each model had to be individually calibrated before performing any study, including corrections for Non-linearity
 - 1. Hit-level digitization calibration
 - 2. Pandora PFA-level calibration (modified procedure from Cambridge)
 - 3. Obtain single particle response
- Other Pandora PFA parameters not optimized
 - E.g. <u>No Cut</u> on Maximum HCal Hit Hadronic Energy (MHHHE)
- Recalibrate when changing Readout Window Timing Cut

$Z' \rightarrow uds$ JER Results For the Most Promising HCal Model Options

- Probably the performance for Tungsten shown here is close to its optimal
 - Tungsten has been observed to be compensating
- Steel on the contrary, may benefit from software compensation -> expect some improvement in JER
- Fe and W performance comparable

Effects of Tweaking

- Results depend of course on Pandor Parameters
- E.g. MHHHE cut. Clearly the 1 GeV cut is not optimal for high jet energies
- However this demonstrates that a lot can be accomplished by optimizing /configuring the software

- It also shows that it is not easy or clear to directly compare between independent studies if the configuration is not the same
- Perhaps more importantly, it shows that the performance of individual models under investigation should not be considered in absolute terms

W/Z Separation Study

- How do the models perform in the presence of background?
- $ZZ \rightarrow \nu \nu dd$ and $WW \rightarrow \nu \ell ud$: 2 jets in an event topology similar to

interesting physics events

- Method similar to PFA perf. Studies
 - See <u>arXiv:1209.4039</u> and <u>LCD-Note-2011-028</u>
 - $\sqrt{s} = 250, 500, 1000, 2000 \text{ GeV}$
- Half of energy shared between the two jets, dijet invariant mass \sim m $_W$ | m_Z
 - Gauge performance of different HCal models by 0.01 looking at its W/Z separation power

- Use FastJet to exclusively find and reconstruct 2 jets
- Simulate and reconstruct events for each energy and model (19Fe_60L, 10W_70L and 10W_75L)
- Plot m_{JJ} for $|\cos(\theta_{W,Z,J_0,J_1})| < 0.7$ and $60 < m_{JJ} < 110$ GeV
- The overlap of the two peaks is an estimate of the separation
- Study with and without background overlay
 - 60 BX $\gamma\gamma \rightarrow had$ generated at 3 TeV

11

W/Z Separation Study Results

W models: 100 ns Barrel Fe: model: 10 ns Barrel Both: 10 ns Endcap

- Analysis including beam background ($\gamma\gamma
 ightarrow had$) (dashed lines)
 - Included Pandora PFA Perf. paper results (<u>arXiv:1209.4039</u> table 3)
 - Similar degradation with inclusion of background method seems OK
 - No change in conclusion; W and Fe HCal performance similar
 - Any difference appears to evaporate with the inclusion of background (and use of required background rejection criteria)

12

Conclusions on HCal Barrel

- JER: "For the HCAL Barrel models investigated, Fe does not appear to perform better than W, assuming the same timing window of 100 ns or larger"
 - At the very least, one can say that at 100 ns, Fe can perhaps have a comparable (within ~5-10%) JER performance with W
 - Indications that Fe can benefit from software compensation (conversely, W is already compensating)
- The single particle response results as well as the W/Z separation study appear to agree with JER conclusions
- With the inclusion of background the performance is even more similar
- JER Performance similar => Other criteria have a more increased significance (cost, engineering, machinability, ...)

Proceed with using Steel as absorber for the next CLIC detector simulation model

Ongoing work:

HCAL ENDCAP COVERAGE OPTIMIZATION

HCal Coverage Extension - Introduction

CERN

- Basically two (?) options:
 - Extend main HCal endcap
 - Introduce additional detector behind forward detectors

	cosθ	θ [rad]	θ [deg]	tanθ	R [mm]	
	0.95	0.32	18	0.33	756	
CLIC_ILD	0.989	0.15	8.6	0.15	400	
ILD	0.991	0.13	7.5	0.13	350	
	0.998	0.06	3.2	0.06	150	
(Values for L=2.65 m)						

- Put as close to beampipe as possible; minimize beampipe radius
- Engineering, supports and beam instrumentation in the way
- Region engineering design is already highly optimized given present requirements (i.e. position of QD0)
- Before embarking on another engineering design adventure, revisit gains in physics performance with increased coverage in the presence of background
 - Study performance of physics processes as a function of R_{in}^{HCal}

Original Strategy

- Work with ILD_o1_v06 (adapted to CLICdp Radius, Nlayers, etc)
- Remove BeamCal08, LumiCalV, LHcal01 and maskX03
- Need to extend coverage without messing up driver too much
 - Fully extend the calorimeter down to $R_{in}=0$
 - Simulate once, reconstruct many: Mask (remove) HCal hits within given
 R before creating PFOs
 - Ignoring secondary interactions (probably won't work)
- First attempt: Study W/Z overlap in WW and ZZ events (same as Barrel study)
 - Peak forward direction at higher \sqrt{s}
- Proven to be too convoluted
- Fallback: Study m_Z resolution in ZZ events
 - More straightforward method, more appropriate for a first study
 - First results (without background) on next slide

Preliminary Results and Problems

CERN

- Profile of m_{JJ} and its RMS as a function of $\cos(\theta_Z)$ for various R_{in}
- Without background overlay for now

=> Not much information

- With the inclusion of background (60 BX $\gamma\gamma \to had$) there was a problem reconstructing m_{II} properly, even with the Tight cuts
 - Looking into FastJet configuration and other parameters
- Could very well be that one cannot ignore the secondary interactions outside the masking radius -> It was suggested to actually remove the particles from the event (and simulate for each model)
 - No easy way to do so with Mokka/stdhep; first attempts failed or corrupted the event
 - Will either try again or write a new HCal driver with variable R_{in}

Summary and Next Steps

- **HCal barrel** optimization studies were performed varying the material and number of layers. Complementary to other ongoing studies
- For the new CLIC detector simulation model:
 - A realistic active layer cassette layout was proposed
 - It was decided to move with a steel HCal barrel
- A CLICdp note is in preparation
- For the HCal Endcap coverage extension, studies are ongoing to gauge gains in physics performance, weighted against increased acceptance of background
- Encountered several issues during first attempts
- Confident that it will eventually yield results so we can propose new requirements for an updated engineering design

BONUS MATERIAL – OLDER PLOTS

Outline of Calibration Procedure and JER study

- Modify ILD_o1_v06 model in Mokka
 - $R_{ECal}^{in} = 1500$ mm, 4.5 T field (constant for all variations, rest same as ILD)
 - Vary absorber material and thickness in HCal Barrel
- Simulate events in Mokka/G4 (QGSB_BERT_HP):
 - γ (10 GeV), μ (10 GeV), K0L(1,2,5,10,20,50,100,200,500 GeV) [G4 GPS]
 - Also generate $Z \rightarrow uds$ events ($\sqrt{s} = 91,200,360,500$ GeV and 1,2,3 TeV) [stdhep files]
- Hit-level, digitization calibration:
 - Dump root ntuples from LCIO files with sum of energies per layer
 - Use γ events to set CalibrEcal (do once, assume same then)
 - Use 50 GeV KOL to set CalibrHCalBarrel (do for every variation of HCal). Do
 once for CalibrHCalEndcap and keep the same (not varying endcap)
 - Use μ to set EcalToMip (verified that remains ~the same) and HcalToMip
 - Assume CalibrMuon, CalibrOther, same as ILD

Outline of Calibration Procedure - II

- PandoraPFA calibration:
 - Run PandoraPFA over the γ events to get ECALToEM , HCALToEM (actually set both to 1 for these studies)
 - Run Calibration procedure over the Kaon events to obtain ECALTOHAD,
 HCALTOHAD at 50 GeV
 - Obtain Non-Linearity Corrections (NLC) [Note Difference from Steve's studies who does not use NLC]:
 - Measure response for 1,2,5,10,20,50,100,200,500 GeV Kaons and calculate scaling factor (extrapolate in-between)
- Recalibrate when changing Readout Window Timing Cut
- Having these numbers, we can study the Jet Energy Resolution
- Use AnalysePerformance (from PandoraAnalysis-v00-06)
- Study the performance various models
 - Also look at different Timing Cuts

19Fe 60L 10 ns HCal with MHHHE=1 and 20 ns ECal

Performance of **10 ns Steel HCa**l is now comparable to the performance of **100 ns Steel** with previous calibration at low energies

W/Z Separation Study - Reminders

Dijet Invariant mass

- Generating WW and ZZ events. At various center of mass energies \sqrt{s}
- One of the bosons in the pairs decays to 2 jets
- Obtain jets with energies $\sim \sqrt{s}/4$
- Reconstructing dijet invariant mass m_{II}
- Calculate overlap of W/Z mass peaks and estimate equivalent separation in terms of N_{σ}
- Perform with and without $\gamma\gamma \to had$ background overlay (60 BX)
- Added some more data since last time
- Today plot also includes studies from similar study previously performed in "Performance of Particle Flow Calorimetry at CLIC" (J. Marshall et al.)

CLIC Workshop 20

W/Z Separation Study - cont'd

- Draw unit gaussians at nominal $m_W=80.385~{\rm GeV}$ and $m_Z=91.188~{\rm GeV}$ with fitted widths
- Find intersection analytically:

$$x_{int} = \frac{-\beta \pm \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha} \text{ with } \begin{cases} \alpha = \sigma_2^2 - \sigma_1^2 \\ \beta = 2(\sigma_1^2 \mu_2 - \sigma_2^2 \mu_1) \\ \gamma = \sigma_2^2 \mu_1^2 - \sigma_1^2 \mu_2^2 - 2\sigma_1^2 \sigma_2^2 \log \frac{\sigma_2}{\sigma_1} \end{cases}$$

Define "Overlap fraction":

•
$$A_O = (\int_{60}^{x_{int}} f_Z(x) dx + \int_{x_{int}}^{110} f_W(x) dx) / 2$$

- Equivalent ideal gaussian separation:
 - $N_{sep} = 2|ROOT :: Math :: normal_quantile(A_0, 1)|$
 - Basically the number of σ the means are apart for two gaussians with the same σ and different means
- Unfortunately, calculating uncertainties is time consuming, so I neglected to do so

JER Results

W/Z Separation Study

- $ZZ \rightarrow vv dd$ and $WW \rightarrow v\ell ud$: 2 jets in an event topology similar to interesting physics events.
- Method similar to PFA perf. Studies (stdhep files should be the same)
 - See <u>arXiv:1209.4039</u> and <u>LCD-Note-2011-028</u>
 - $\sqrt{s} = 250, 500, 1000, 2000 \text{ GeV}$
- Half of energy shared between the two jets, dijet invariant mass \sim m_W | m_Z
 - Gauge performance of different HCal models by looking at its W/Z separation power
- Use FastJet Marlin Processor to exclusively find and reconstruct 2 jets
 - For WW: First remove lepton from PFOParticles (matching to MC within cone with $|\cos(\theta)| < 0.9998$)
 - No truth linking info due to bug with Mokka/G4 9.6
- Simulate and reconstruct events for each energy and model (19Fe_60L, 10W_70L and 10W_75L)
- Plot m_{JJ} for $|\cos(\theta_{W,Z,J_0,J_1})| < 0.7$ and $60 < m_{JJ} <$ 110 GeV

- The overlap of the two peaks is an estimate of the separation
- Still some tails, so fit around m_W , m_Z iteratively within 3σ and use fits for overlap calculation
- Note: No beam induced background assumed for now

26

CLIC Workshop 20

W/Z Separation Study - cont'd

- Draw unit gaussians at nominal $m_W=80.385~{\rm GeV}$ and $m_Z=91.188~{\rm GeV}$ with fitted widths
- Find intersection analytically:

$$\alpha = \sigma_2^2 - \sigma_1^2$$

$$\alpha = \frac{-\beta \pm \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha} \text{ with } \beta = 2(\sigma_1^2 \mu_2 - \sigma_2^2 \mu_1)$$

$$\gamma = \sigma_2^2 \mu_1^2 - \sigma_1^2 \mu_2^2 - 2\sigma_1^2 \sigma_2^2 \log \frac{\sigma_2}{\sigma_1}$$

•
$$A_O = (\int_{60}^{x_{int}} f_Z(x) dx + \int_{x_{int}}^{110} f_W(x) dx) / 2$$

- $N_{sep} = 2|ROOT :: Math :: normal_quantile(A_0, 1)|$
- Basically the number of σ the means are apart for two gaussians with the same σ and different means
- Unfortunately, calculating uncertainties is time consuming, so I neglected to do so

Energy	19Fe_60L		10W_	_70L	10W_75L	
[GeV]	Overlap [%]	Nsep [σ]	Overlap [%]	Nsep [σ]	Overlap [%]	Nsep [σ]
250	11.3	2.4	10.6	2.5	10.3	2.5
500	11.9	2.4	11.3	2.4	10.6	2.5
1000	16.2	2.0	14.9	2.1	14.2	2.1
2000	22.3	1.5	21.2	1.6	22.0	1.5

Reminder: Readout Windows

- See talks by M. Thompson:
 - http://indico.cern.ch/event/115459/contribution/14/material/slides/0.pdf (slides 3,4)
 - https://agenda.linearcollider.org/getFile.py/access?contribId=13&sessionId=1&resId=0&mate rialId=slides&confId=5134 (slides 16,17...)

Steel (Endcap): ~10 ns

Tungsten (Endcap): ~100 ns

Further timing cuts (mainly for background/pileup suppression) are applied at the PFO level. NOT CONSIDERED IN THE STUDY PRESENTED TODAY

We will apply cuts at the digitization level

28

Material Scan of W-HCAL (CLIC_SID_CDR)

- Try to verify material budget in current detector geometry implementations
- See whether we can squeeze some more the HCal outer radius
- Scan using Slic/Geant4
 (see backup)
- Geometry Parameters:

(www.lcsim.org/detectors/clic_sid_cdr.html)

www.icsim.org/detectors/clic_sid_cdi.iitim					
HCAL BARREL					
Number Of Layers	75				
Number Of Sides	12				
Inner Radius	1419 mm				
Outer Radius	2656.5 mm				
Z Length	3530 mm				
Section Phi	0.52 radians				
Cell Size U	30.0 mm				
Cell Size V	30.0 mm				
Layers 0 - 74					
10 mm	Tungsten				
5 mm (sensor)	Polystyrene				
1.5 mm	Air				

CLIC Workshop 2015

CLIC_SID_CDR Material Scan in θ

ILD AHCAL Assembly (from ILD TDR)

Figure III-3.14

Arrangement of AH-CAL layers with electronic components (left), cross section of an active layer (right).

, (3)						
Active Element C	ILD					
Material	Thickness	Thickness				
iviateriai	mm	mm				
Steel	2	0.5				
PCB	1.4	1				
Cu (etching)	0.1	0				
Electronics (30%)	1.5	1				
Scintillator	5	3				
Sum (per layer)	10	5.5				
#λΙ (per layer)	0.02	0.01				

- NB: ILD TDR also mentions "The active layers will contribute 4 mm of steel to each absorption layer"
- Not shown in diagram?
- 16 mm (absorber layer) +4 mm = 20 mm steel
- +0.5 mm bottom plate?
- Not clear what is done in code (comment says ignored)

Tungsten and Steel Response to 50 GeV K0L for various Timing Cuts: Fraction of Reconstructed Energy

CERN

- Tighter timing cut = Smaller Fraction of reconstructed energy
 - Tungsten is more sensitive
 - Calibration procedure adapts to correct for the lost energy

32

UPDATED NOV 3.

Readout Window Timing Cut [ns]

Tungsten and Steel Response to 50 GeV K0L for various Timing Cuts: Energy Resolution (normalized to fitted mean)

- First attempt to reproduce previous studies by M. Thomson and J. Marshall (see backup)
- **Similar conclusion to JER study:**

Tungsten@100 ns "outperforms" Steel at 10 ns and 100 ns

Readout Window Timing Cut [ns]