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Introduction - Outline 
• Working towards an updated simulation model for the new 

CLIC detector 

• Include as much detail and up to date information from 
optimization/engineering studies as possible/available 

• Feed back updated figures/requirements to engineering 
and feasibility studies 

• There have been already several iterations of detector 
optimization, including the HCal 

• Two particularly interesting issues in the case of the HCal: 

• HCal Barrel: Size (𝑹) ↔ Abs. Material (W vs Fe) ↔ Assembly 
• Implications on coil size and requirements, overall detector size 

• HCal Endcap: Forward coverage and acceptance 
• Implications on forward region instrumentation and engineering 

design 
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HCAL BARREL OPTIMIZATION 
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Previous Studies 
for the CDR 

CDR Fig. 6.1 

Numbers indicate #𝜆Ι  

CDR Fig. 
6.2 

• These studies drive the aim for an HCal 
depth of ~𝟕. 𝟓 𝝀𝚰  at  𝜽 ≈ 𝟗𝟎° 
• Try now to constraint the Radial 

size of the HCal  
 

• Right: Pandora PFA study  by A. Lucaci Timoce  
• Bottom: Toy (testbeam stack) calorimeter 

study by C. Grefe and P. Speckmeyer 
 

• Single 𝜋+ (Slic) 
• Hit based 
• TMVA calibration 
• Also compared 

performance of 
Tungsten and 
Steel Absorber 4 
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• Verified that both previous simulation models (CLIC_SID, CLIC_ILD) and 
reconstruction chains included HCal Barrels with ~7.5 𝜆I  at θ=90ο  

• Both models do not include support for the radiator or any sort of 
cassette for the active elements/electronics 

• Looked into more realistic scenarios 

• Studies performed using a modified version of ILD_o1_V06  model and 
the ILD software chain 

 

 HCAL BARREL CLIC_ILD (SHcalSc02) CLIC_SID 

Number Of Layers    75 75 
Number Of Sides  (8) 16 12 
Inner Radius     2058 mm 1419 mm 
Outer Radius *    3296 mm 2656.5 mm 
Z Length     4700 mm 3530 mm 
Section Phi  0.52 radians 0.52 radians 
Cell Size   30.0 mm x 30.0 mm 30.0 mm x 30.0 mm 
Layers  0 - 74   

10 mm    Tungsten Tungsten 

5 mm    (sensor) Polystyrene Polystyrene 

1.5 mm   Air  Air  

What was Previously There 
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Scan using Mokka/ 
Geant4  



Modified ILD Assembly (17.5 mm per layer) 

S T E E L   P C B ~ 0 . 7  mm 

SCINTILLATOR (polysterene)  
S T E E L   

RADIATOR (W alloy or Fe) 

RADIATOR (W alloy or Fe) 

2.7  mm A I R   A I R  A I R   A I R  

10 mm 

10 mm 

3 mm 

0.5 mm 

0.5 mm 

(Steel 
cassette) 

17.5 mm 

7.5 mm 

Active Element Cassette 

Material 
Thickness 

mm 
Steel 1 

PCB 0.7 

Cu (etching) 0.1 
Electronics  0 

Scintillator 3 
Sum (per layer) 4.8 
#λΙ (per layer) 0.01 

• In terms of material per layer and thickness per layer, a 
19 mm steel absorber thickness model will basically be 
the same as the ILD_o1_v06 model with this assembly 

• For a 10 mm Tungsten HCal,  it follows that we will 
have extra material 
• Updated calculations on next slide 

• Still does not address support and assembly 
• Would more naturally fold into absorber structure 

in the case of  Fe 
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PCB (0.7 mm) + Cu (0.1 mm) 
(ignore electronics) 

• Generous 2.7 mm air gap 
(called “Fiber gap” in Mokka ILD driver) 

• Stack on top for simplicity 
• Could also accommodate some 

thickness for electronics 

(slit size) 

(layer thickness for W) 

Kept ILD_o1_v06 thicknesses, added cassette, 
removed 1 mm from Steel absorber thickness 
• Gain 2 mm  



Various Model Options for the HCAL Barrel 

• Try variations  of absorber material, thickness and number of layers resulting 
in depth around 7.5 λΙ (established from CDR studies) 

 
• Modify ILD_o1_v06 model in Mokka 

• Set  𝑅𝑖𝑛
𝐻𝐶𝑎𝑙 = 1750 mm, additional absorber plate at the end, 1 mm steel 

in cassette  
• 4.5 T field (constant for all variations,  rest same as ILD) 

Detector # 
La

ye
rs

 Abs 
Thick 

Cass. 
Thick 

Air 
Total 

Depth 
Total 

Thickness 
Inner R 

Outer Face 
Position 

Outer Radius 

mm mm mm #λΙ mm mm mm mm 

CLIC_ILD_CDR 
75 10 

5*  
(*Scint) 

1.5 7.42 
1237.5 2058 3295.5 3341.2 

CLIC_SID_CDR 1237.5 1447 2684.5 2721.7 
W + cassette 75 10 4.8 2.7 7.92  1322.5 1750 3072.5 3115.1 
W + cassette 70 10 4.8 2.7 7.40  1235 1750 2985 3026.4 
Fe + cassette 60 19 4.8 2.7 7.55  1609 1750 3359 3405.6 
Fe + cassette 70 16 4.8 2.7 7.93  1661 1750 3411 3458.3 

7 Notice two most promising options (bold black) result in outer 
radii differing by ~𝟒𝟎 𝐜𝐦 
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Methods to Gauge HCal Performance 
• Tried to gauge performance of various models: 

• Single Particle Response 

• Jet Energy Resolution (JER): 

• From total Deposited Energy in 𝒁′ → 𝒖𝒅𝒔 

• Use AnalysePerformance (from PandoraAnalysis-v00-06) 

• From Z/W measurement 𝒁𝒁 → 𝝂𝝂𝒅𝒅 and 𝑾𝑾 → 𝝂ℓ𝒖𝒅 

• Use 𝒎𝑱𝑱 overlap estimation  

• Each model had to be individually calibrated before 
performing any study, including corrections for Non-linearity 
1. Hit-level digitization calibration 

2. Pandora PFA-level calibration (modified procedure from Cambridge) 

3. Obtain single particle response 

• Other Pandora PFA parameters not  optimized 

• E.g. No Cut on Maximum HCal Hit Hadronic Energy (MHHHE) 

• Recalibrate when changing Readout Window Timing Cut 
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𝑍′ → 𝑢𝑑𝑠  JER Results  For the Most Promising 
HCal Model Options 
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• Probably the performance for Tungsten shown here is close to its optimal 

• Tungsten has been observed to be compensating 

• Steel on the contrary, may benefit from software compensation -> expect some 
improvement in JER 

• Fe and W performance comparable  

𝐜𝐨𝐬𝜽𝒋 < 𝟎. 𝟕 

QGSP_BERT_HP 



Effects of 
Tweaking  

• Results depend of course on Pandora 
Parameters 

• E.g. MHHHE cut. Clearly the 1 GeV 
cut is not optimal for high jet 
energies 
 

• However this demonstrates that a 
lot can be accomplished by 
optimizing /configuring the 
software 
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• It also shows that it is not easy or clear to directly compare between 

independent studies if the configuration is not the same 

 

• Perhaps more importantly, it shows that the performance of 
individual models under investigation should not be considered in 
absolute terms 
 



W/Z Separation Study 
• How do the models perform in the presence of background? 

• 𝑍𝑍 → 𝜈𝜈𝒅𝒅 and 𝑊𝑊 → 𝜈ℓ𝒖𝒅: 2 jets in an event topology similar to 
interesting physics events 

• Method similar to PFA perf. Studies  
• See arXiv:1209.4039 and LCD-Note-2011-028 

• 𝑠 = 250, 500, 1000, 2000 GeV 

• Half of energy shared between the two jets, 
dijet invariant mass ~m𝑊 | 𝑚𝑍 
• Gauge performance of different HCal models by 

looking at its W/Z separation power 

Example for 19Fe_60L,  𝑠 = 1 TeV 

• Use FastJet to exclusively find and reconstruct 2 jets 

• Simulate and reconstruct events for each energy and model (19Fe_60L, 
10W_70L and 10W_75L) 

• Plot 𝑚𝐽𝐽 for|cos (𝜃𝑊,𝑍,𝐽0,𝐽1)| < 0.7 and 60 < 𝑚𝐽𝐽<110 GeV 

• The overlap of the two peaks is an estimate of the separation 

• Study with and without background overlay 
• 60 BX 𝜸𝜸 → 𝒉𝒂𝒅 generated at 3 TeV 

 

11 

http://arxiv.org/pdf/1209.4039v1.pdf
https://edms.cern.ch/file/1158687/1/DRAFT_pfa_note.pdf
https://edms.cern.ch/file/1158687/1/DRAFT_pfa_note.pdf
https://edms.cern.ch/file/1158687/1/DRAFT_pfa_note.pdf
https://edms.cern.ch/file/1158687/1/DRAFT_pfa_note.pdf
https://edms.cern.ch/file/1158687/1/DRAFT_pfa_note.pdf
https://edms.cern.ch/file/1158687/1/DRAFT_pfa_note.pdf
https://edms.cern.ch/file/1158687/1/DRAFT_pfa_note.pdf
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W/Z Separation Study Results 

• Analysis including beam background (𝜸𝜸 → 𝒉𝒂𝒅 ) (dashed lines) 

• Included Pandora PFA Perf. paper results (arXiv:1209.4039 table 3) 

• Similar degradation with inclusion of background – method seems OK 

• No change in conclusion; W and Fe HCal performance similar 

• Any difference appears to evaporate with the inclusion of 
background (and use of required background rejection criteria)  
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http://arxiv.org/abs/1209.4039


Conclusions on HCal Barrel 
• JER: “For the HCAL Barrel models investigated, Fe does not appear 

to perform better than W, assuming the same timing window of 
100 ns or larger” 

• At the very least, one can say that at 100 ns, Fe can perhaps have a 
comparable (within ~5-10%) JER performance with W 

• Indications that Fe can benefit from software compensation 
(conversely, W is already compensating) 

• The single particle response results as well as the W/Z separation 
study appear to agree with JER conclusions 

• With the inclusion of background the performance is even more 
similar 

• JER Performance similar => Other criteria have a more increased 
significance (cost, engineering, machinability, …) 
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13 Proceed with using Steel as absorber for the next CLIC 
detector simulation model  



HCAL ENDCAP COVERAGE 
OPTIMIZATION 

Ongoing work: 
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HCal Coverage Extension - Introduction 

15 

• Basically two (?) options: 

• Extend main HCal endcap  

• Introduce additional detector behind 
forward detectors 

 

cosθ θ [rad] θ [deg] tanθ R [mm] 
0.95 0.32 18 0.33 756 

CLIC_ILD 0.989 0.15 8.6 0.15 400 
ILD 0.991 0.13 7.5 0.13 350 

0.998 0.06 3.2 0.06 150 
(Values for L=2.65 m) 

• Put as close to beampipe as possible;  minimize beampipe radius 

• Engineering, supports and beam instrumentation in the way 

• Region engineering design is already highly optimized given present 
requirements (i.e. position of QD0) 

• Before embarking on another engineering design adventure,  revisit 
gains in physics performance with increased coverage in the 
presence of background 

• Study performance of physics processes as a function of 𝑅𝑖𝑛
𝐻𝐶𝑎𝑙 
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Original Strategy 

16 • Work with ILD_o1_v06 (adapted to CLICdp Radius, Nlayers, etc) 

• Remove BeamCal08, LumiCalV, LHcal01 and maskX03 

• Need to extend coverage without messing up driver too much 

• Fully extend the calorimeter down to 𝑅𝑖𝑛 = 0 

• Simulate once, reconstruct many: Mask (remove) HCal hits within given 
𝑹 before creating PFOs 

• Ignoring secondary interactions (probably won’t work) 

 

𝑅 

• First attempt: Study W/Z overlap  in WW 
and ZZ events (same as Barrel study) 

• Peak forward direction at higher 𝑠  

• Proven to be too convoluted 

• Fallback: Study 𝑚𝑍 resolution in ZZ events 

• More straightforward method, more 
appropriate for a first study 

• First results (without background) on next 
slide 
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Preliminary Results and Problems 

17 

• Profile of 𝑚𝐽𝐽 and its 

RMS as a function of 
cos 𝜃𝑍  for various 𝑅𝑖𝑛 

• Without background 
overlay for now 

=> Not much information 

• With the inclusion of background (60 BX 𝛾𝛾 → ℎ𝑎𝑑) there was a 
problem reconstructing 𝑚𝐽𝐽  properly, even with the Tight cuts 

• Looking into FastJet configuration and other parameters 

• Could very well be that one cannot ignore the secondary interactions 
outside the masking radius -> It was suggested to actually remove 
the particles from the event (and simulate for each model) 

• No easy way to do so with Mokka/stdhep; first attempts failed or 
corrupted the event 

• Will either try again or write a new HCal driver with variable 𝑅𝑖𝑛 

 

2
8

/0
1

/2
0

1
5

 

C
LI

C
 W

o
rk

sh
o

p
 2

0
1

5
 



Summary and Next Steps 
• HCal barrel optimization studies were performed varying the 

material and number of layers. Complementary to other 
ongoing studies 

• For the new CLIC detector simulation model: 

• A realistic active layer cassette layout was proposed 

• It was decided to move with a steel HCal barrel  

• A CLICdp note is in preparation 

 

• For the HCal Endcap coverage extension, studies are ongoing to 
gauge gains in physics performance, weighted against increased 
acceptance of background 

• Encountered several issues during first attempts 

• Confident that it will eventually yield results so we can propose 
new requirements for an updated engineering design 
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BONUS MATERIAL – OLDER PLOTS 
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Outline of Calibration Procedure and JER 
study 

• Modify ILD_o1_v06 model in Mokka 

• 𝑅𝐸𝐶𝑎𝑙
𝑖𝑛 =  1500 mm, 4.5 T field (constant for all variations,  rest same as ILD) 

• Vary absorber material and thickness in HCal Barrel 

• Simulate events in Mokka/G4 (QGSB_BERT_HP): 
• γ (10 GeV), μ (10 GeV), K0L(1,2,5,10,20,50,100,200,500 GeV) [G4 GPS] 

• Also generate 𝑍 → 𝑢𝑑𝑠 events ( 𝑠 = 91,200,360,500 GeV and 1,2,3 TeV) [stdhep files] 

• Hit-level, digitization calibration: 
• Dump root ntuples from LCIO files with sum of energies per layer 

• Use γ events to set CalibrEcal  (do once, assume same then) 

• Use 50 GeV K0L to set CalibrHCalBarrel  (do for every variation of HCal). Do 
once for CalibrHCalEndcap and keep the same (not varying endcap) 

• Use μ to set EcalToMip (verified that remains ~the same) and HcalToMip 

• Assume CalibrMuon, CalibrOther, same as ILD 
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Outline of Calibration Procedure - II 
• PandoraPFA calibration: 

• Run PandoraPFA over the γ events to get ECALToEM , HCALToEM (actually set 
both to 1 for these studies) 

• Run Calibration procedure  over the Kaon events to obtain ECALToHAD, 
HCALToHAD at 50 GeV 

• Obtain Non-Linearity Corrections (NLC) [Note Difference from Steve’s 
studies who does not use NLC]: 

• Measure response for 1,2,5,10,20,50,100,200,500 GeV Kaons and calculate scaling 
factor (extrapolate in-between)  

• Recalibrate when changing Readout Window Timing Cut 

• Having these numbers, we can study the Jet Energy Resolution 

• Use AnalysePerformance (from PandoraAnalysis-v00-06) 

• Study the performance various models 

• Also look at different Timing Cuts 
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19Fe 60L 10 ns HCal with MHHHE=1 and  20 ns ECal  
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Performance of 10 ns Steel HCal is now comparable to the performance of  100 
ns Steel with previous calibration at low energies 



W/Z Separation Study -
Reminders 

• Generating WW and ZZ events. At various                                      

center of mass energies 𝑠 

• One of the bosons in the pairs decays to 2 jets 

• Obtain jets with energies ~ 𝑠/4 

• Reconstructing  dijet invariant  mass 𝑚𝐽𝐽 

• Calculate  overlap of W/Z mass peaks and estimate equivalent 

separation in terms of 𝑁𝜎  

• Perform with and without 𝛾𝛾 → ℎ𝑎𝑑 background overlay (60 BX) 

• Added some more data since last time 

• Today plot also includes studies from similar study previously 

performed in “Performance of Particle Flow Calorimetry at CLIC”  

(J. Marshall et al.) 
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W/Z Separation Study – cont’d  
• Draw unit gaussians at nominal 𝑚𝑊 = 80.385 GeV 

and 𝑚𝑍 = 91.188 GeV with fitted widths 

• Find intersection analytically: 

• 𝑥𝑖𝑛𝑡 =
−𝛽± 𝛽2−4𝛼𝛾

2𝛼
 with 

𝛼 = 𝜎2
2 − 𝜎1

2

𝛽 = 2(𝜎1
2𝜇2 − 𝜎2

2𝜇1)

𝛾 = 𝜎2
2𝜇1

2 − 𝜎1
2𝜇2

2 − 2𝜎1
2𝜎2

2 log
𝜎2

𝜎1

 

• Define “Overlap fraction”: 

• 𝐴𝑂 = ( 𝑓𝑍 𝑥 𝑑𝑥 
𝑥𝑖𝑛𝑡
60

+  𝑓𝑊 𝑥 𝑑𝑥 
110

𝑥𝑖𝑛𝑡
) 2  

• Equivalent ideal gaussian separation: 

• 𝑁𝑠𝑒𝑝 = 2|𝑅𝑂𝑂𝑇 ∷ 𝑀𝑎𝑡ℎ ∷ 𝑛𝑜𝑟𝑚𝑎𝑙_𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐴0, 1)| 

• Basically the number of 𝝈 the means are apart for two gaussians with the same 𝜎 and 
different means 

• Unfortunately, calculating uncertainties is time consuming, so I neglected to do so 
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JER Results 

2
8

/0
1

/2
0

1
5

 
C

LI
C

 W
o

rk
sh

o
p

 2
0

1
5
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W/Z Separation Study 
• 𝑍𝑍 → 𝜈𝜈𝒅𝒅 and 𝑊𝑊 → 𝜈ℓ𝒖𝒅: 2 jets in an event topology similar to interesting 

physics events.  

• Method similar to PFA perf. Studies (stdhep files should be the same) 

• See arXiv:1209.4039 and LCD-Note-2011-028 

• 𝑠 = 250, 500, 1000, 2000 GeV 

• Half of energy shared between the two jets, dijet invariant mass ~m𝑊 | 𝑚𝑍 

• Gauge performance of different HCal models by looking at its W/Z separation power 

• Use FastJet Marlin Processor to exclusively find and 
reconstruct 2 jets 
• For WW: First remove lepton from PFOParticles (matching 

to MC within cone with |cos (𝜃)| < 0.9998) 

• No truth linking info due to bug with Mokka/G4 9.6 

• Simulate and reconstruct events for each energy and 
model (19Fe_60L, 10W_70L and 10W_75L) 

• Plot 𝑚𝐽𝐽 for|cos (𝜃𝑊,𝑍,𝐽0,𝐽1)| < 0.7 and 60 < 𝑚𝐽𝐽<110 
GeV 

 

Example for 19Fe_60L,  𝑠 = 1 TeV 

• The overlap of the two peaks is an estimate of the separation 

• Still some tails,  so fit around 𝑚𝑊, 𝑚𝑍 iteratively within 3𝜎 and use fits for 
overlap calculation 

• Note: No beam induced background assumed for now 
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W/Z Separation Study – cont’d  
• Draw unit gaussians at nominal 𝑚𝑊 = 80.385 GeV 

and 𝑚𝑍 = 91.188 GeV with fitted widths 

• Find intersection analytically: 

• 𝑥𝑖𝑛𝑡 =
−𝛽± 𝛽2−4𝛼𝛾

2𝛼
 with 

𝛼 = 𝜎2
2 − 𝜎1

2

𝛽 = 2(𝜎1
2𝜇2 − 𝜎2

2𝜇1)

𝛾 = 𝜎2
2𝜇1

2 − 𝜎1
2𝜇2

2 − 2𝜎1
2𝜎2

2 log
𝜎2

𝜎1

 

• Define “Overlap fraction”: 

• 𝐴𝑂 = ( 𝑓𝑍 𝑥 𝑑𝑥 
𝑥𝑖𝑛𝑡
60

+  𝑓𝑊 𝑥 𝑑𝑥 
110

𝑥𝑖𝑛𝑡
) 2  

• Equivalent ideal gaussian separation: 

• 𝑁𝑠𝑒𝑝 = 2|𝑅𝑂𝑂𝑇 ∷ 𝑀𝑎𝑡ℎ ∷ 𝑛𝑜𝑟𝑚𝑎𝑙_𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐴0, 1)| 

• Basically the number of 𝝈 the means are apart for two gaussians with the same 𝜎 and 
different means 

• Unfortunately, calculating uncertainties is time consuming, so I neglected to do so 

Energy 19Fe_60L 10W_70L 10W_75L 

[GeV] Overlap [%] Nsep [σ] Overlap [%] Nsep [σ] Overlap [%] Nsep [σ] 

250 11.3 2.4 10.6 2.5 10.3 2.5 

500 11.9 2.4 11.3 2.4 10.6 2.5 

1000 16.2 2.0 14.9 2.1 14.2 2.1 

2000 22.3 1.5 21.2 1.6 22.0 1.5 
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Reminder: Readout Windows 
• See talks by M. Thompson: 

• http://indico.cern.ch/event/115459/contribution/14/material/slides/0.pdf (slides 3,4) 

• https://agenda.linearcollider.org/getFile.py/access?contribId=13&sessionId=1&resId=0&mate
rialId=slides&confId=5134 (slides 16,17…) 
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Further timing cuts (mainly for background/pileup suppression) are applied at the 
PFO level. NOT CONSIDERED IN THE STUDY PRESENTED TODAY 

• We will apply cuts at the digitization level 
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• Try to verify material 
budget in current 
detector geometry 
implementations  

• See whether we can 
squeeze some more  the 
HCal outer radius  

• Scan using Slic/Geant4 
(see backup) 

• Geometry Parameters:  
(www.lcsim.org/detectors/clic_sid_cdr.html) 
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HCAL BARREL 
Number Of Layers     75 
Number Of Sides  12 
Inner Radius     1419 mm 
Outer Radius     2656.5 mm 
Z Length     3530 mm 
Section Phi  0.52 radians 
Cell Size U  30.0 mm 
Cell Size V  30.0 mm 
Layers  0 - 74   
10 mm    Tungsten 
5 mm    (sensor) Polystyrene 
1.5 mm   Air  

Material Scan of W-HCAL (CLIC_SID_CDR) 

2
8

/0
1

/2
0

1
5

 
C

LI
C

 W
o

rk
sh

o
p

 2
0

1
5

 

29 

http://www.lcsim.org/detectors/clic_sid_cdr.html


CLIC_SID_CDR Material Scan in θ 
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ILD AHCAL Assembly (from ILD TDR) 

Active Element Cassette ILD 

Material 
Thickness Thickness 

mm mm 

Steel 2 0.5 

PCB 1.4 1 

Cu (etching) 0.1 0 
Electronics (30%) 1.5 1 

Scintillator 5 3 

Sum (per layer) 10 5.5 
#λΙ (per layer) 0.02 0.01 

• NB: ILD TDR also mentions 
“The active layers will 
contribute 4 mm of steel to 
each absorption layer” 
• Not shown in diagram? 
• 16 mm (absorber layer) +   
4 mm = 20 mm steel  
• +0.5 mm bottom plate? 
• Not clear what is done in 
code (comment says ignored) 
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Tungsten and Steel Response to 50 GeV K0L for various 
Timing Cuts: Fraction of Reconstructed Energy  
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Readout Window Timing Cut [ns] 

𝜇
𝐸 𝐸

[%
] 

• Tighter timing cut = Smaller Fraction of reconstructed energy  

• Tungsten is more sensitive 

• Calibration procedure adapts to correct for the lost energy 
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UPDATED NOV 3.  
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Tungsten and Steel Response to 50 GeV K0L for various 
Timing Cuts: Energy Resolution (normalized to fitted mean) 
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Readout Window Timing Cut [ns] 

𝜎
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[%
] 

• First attempt to reproduce previous studies by M. Thomson and J. Marshall  (see 
backup) 

• Similar conclusion to JER study:  

Tungsten@100 ns “outperforms” Steel at 10 ns and 100 ns 

UPDATED NOV 3  


