Main tracker optimisation
and tracking performance
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Reminder of agreed parameters for the tracker simulation
Next steps in the main tracker optimisation

Preliminary results for layer layout optimisation
Requirements for the tracking code

Status of the extrapolation procedure for a full Si tracking
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Choice of B=4T increase the occupancy in the first layer of the vertex detector
- Move the first layer from R=27mm to R=31mm

From Nilou’s results: on quark-tagging performance

The effect on tracking performance is also small:
2 None on momentum resolution
0 Up to 15% on d, resolution (from Nilou’s: worsening on b-tag perf within 10%)
o 15% on angular variables
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Layer (see slides 6-9)
Input needed from engineer design
No large effect on tracking performance
To do: efficiency study

(see slide 10)
- New CERN PhD student: Magdalena Munker

R&D and studies for
- New CERN fellow: Andreas Nurnberg
Technology (stereopairs / single strips)
Strips size and thickness
Power consumption (ongoing — S. Kulis’ results)

Not crucial a.t.m. but do not forget:
In fast simulation and ILD software, simple gaussian smearing
In SiD software chain: charge sharing considered, retuning needed
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Some variations observed
>10% momentum resolution improvement for longer barrel
10% improvement in dO resolution for longer barrel
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Magdalena Munker’s study

Old study by Andre Sailer

Study the due to
incoherent pair background
in Si vertex and main tracker

and
running (in ILD software
framework + ILD detector
model) : able to reproduce
occupancy plots

Next:
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B field — reminder
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* Worst case foreseen: maximum variation of 9% along z

o Shorter endcape yoke (1.4m) = few % distortion by the field of special
ring coils needed to contain the stray field outside the detector

* Change the coil size for the new model should not affect much the

qguality of the field
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F - b r 3 - r -
Requirements ror the sortware

B field variation needs to be included in the reconstruction for a fair, not
biased evaluation of the tracking performance

In ILD (Bo Li et al.): till a 10% B variation, it is possible to restore the
performance to the homogeneous field using a segmented-wised helix
track fitting integrated in a Kalman filter

transform helix (k + 1)

layer (k + 1)
{ a'- a'(updated by filter)

layer (k)

arXiv:1305.7300v2

We need a tracking code able to support this!

We are getting close!
Frank’s talk: https://indico.cern.ch/event/336335/session/7/contribution/126/material/slides/0.pdf




Idea: use vertex tracks as a seed and extend to the main tracker
Interface with DD4hep CLIC geometry (Nikiforos, Frank):

SOON © but not in this talk

Results still with ILD detector = vertex + 2 SIT stereostrips layers

To do: a.t.m. vertex seed track for CLIC are computed with SiTracking
- move to cellular automaton + mini-vectors computation =2
implementation + retuning needed
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Entries 1003
Mean 9.955
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track p=10GeV
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Correct momentum measurement, probably room for improvement

Next steps:

Study the tracking performance in terms of efficiency, fake rate,
momentum and impact parameter resolution =2 Interface with
ILDPerformance package

When this is ok, start to investigate strategy for CPU optimisation
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Very preliminary, few statistics

When the extrapolated fit is close to the edge of the module it may happen
that the corresponding hit is on a different module (a.t.m. hit association is
done in the same module of the fit, close modules not considered)

— a wrong hit can be included = part of the tails

Study of the track hit association and comparison with the truth
information is needed
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Tracker optimisation studies are on-going

New group investigating the tracker technology can
provide interesting inputs for the simulation

New tracking code is coming together
Track extrapolation seems feasible
Move to the CLIC geometry for all studies

Validation and more study on tracking performance and
truth information comparison



BACK-UP
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Direct Hits [1/mm?2/BX]
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Lower B gives more occupancy in the vertex detector
At 31mm 25% increase from B=5T to B=4T

Possibility for larger inner radius for the vertex detector is
investigated

R,, from 27mm to 31mm
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Q00 and Yo
Two main configurations under study:

0 Possibility for better HCAL acceptance
- interest in t-channel physics and high
energies

0 Loss in luminosity and engineering issues
to be studied

o Make the detector smaller
- yoke endcap from 2.8m to 1.4m

— add (copper) ring coils to reduce the
stray field

= 10% of iron in the concrete is assumed
= Stray field lower than 3.2mT at R=15m

= |nside the detector region:
- 4% reduction of the B field
- increase of field distrotion

= Power of ring coils: 2 x 2260 kW

0 Engineering issues to be studied

Bz(R=0), inT

cavern wall

BRSNS

—1=6.2m; No RC, no iron wall \\
- N

——L=5m; with RC and iron wall

——L=5m; with RC, no iron wall

0 1 2 3

Z-axis coordinate, in m






FROM ATLAS NOTE soft-pub-2007-005: track
(A. Salzburger)

«* Measurement

ﬁ Predicted track parameters

Figure 1: Simplified illustration of a typical extrapolation process within a Kalman filter step. The track
representation on the detector module 1 is propagated onto the next measurement surface, which results
in the track prediction on module 2. The traversing of the material layer between the two modules causes
an increase of the track direction uncertainties and thus — by correlation — an increased uncertainty of
the predicted track parameters. In the Kalman filter formalism, the weighted mean between prediction and
associated measurement build the updated measurement which builds the start point for the next filter step;
this leads to the illustrated non-continuous track model.



FROM C. GREFE’S THESIS:

(b) Sz plane

starting point Py = (g, Yo, 20)

do = /75 + 45

k B
PT = —

I
Px = PT COS ¢y,
Py = PT Singy,
pZ:pT tan/l’
p = PT :pT\/1+tan2/l,

cos A

K
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Geometry used:

(CLIC_SiD with reduced endcaps)
Degradation in reco efficiency and bias in
the p; reco due to the

2 In CLIC_SiD extrapolation and fit

o In ATLAS use of
(Runge-Kutta)
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C

Global helical model:
Homogeneous B
Circumference in r¢ plane
Straight line in Sz plane
5 parameters (k, do, 20, Po, tan)

Wlse-sggmented helix: layer (k + 1) transform_— helix (k + 1)
Helix from layer to layer (homo B) L, a’(updated by filter)

At every measurement update the B
field and the reference frame

Impose a “sufficient” number of these

steps (not only on measurement plane)  &er (%)
Kalman filter implementation arXiv:1305.7300v2
soft-pub-2007-005 Runge-Kutta based extrapolator:
d’r q [dr dr General method, any assumption about B
ds? :\ P [% % B(r)] }+ 9(p,r) = Solve second order differential equation of
Y l, motion to compute the intersection of the

. trajectory with the destination plane
Lorentz force energy loss function



FROM ILD NOTE arXiv:1305.7300v2:
(Bo Li, Keisuke Fujii, Yuanning Gao)
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Figure 4: Transformation from one frame to the next. The # and ¢ angles
are determined by the magnetic field directions at the position Oy and Oy 1.



Table 2.1.: The different criteria available in the KiTrack package
(The time is given relative to the fastest criterion)

FROM R. Glattauer’s THESIS

name

‘ hits ‘ time ‘ description

DeltaRho

2

1.00

The difference of the distances to the z-axis:
Ap =153 +y3 — /ol + i}

IPCircleDist

1.30

From the 3 hits a circle is calculated in the
z-y plane and the distance of the IP to this cir-
cle is measured.

RZRatio

1.00

The distance of two hits divided by their z-

V Az2+Ay2+Az2

distance: T~

StraightTrackRatio

1.04

Best suited for straight tracks: if the line be-
tween the two hits points towards IP. Calcu-
lated is £+/22, where p = /2? + y2. Is equal to
1 for completely straight tracks.

IPCircleDistTimesR

1.30

Distance of the IP to the circle multiplied with
the radius of the circle to take into account
higher deviations for low transversal momentum
tracks.

DistOfCircleCenters

1.66

Circles are calculated for the first and last 3
hits. The distance of their centers is measured.

RChange

1.66

The coefficient of the radii of the two circles.

DeltaPhi

1.30

The difference between the ¢ angles of two
hits in degrees. ¢ is the azimuthal angle in
the z-y plane w.r.t. the positive x axis: ¢ =
atan2(y, x).

DistToExtrapolation

2.21

From the first 3 hits the relation of a to Az is
calculated. This is used to predict z and y of the
fourth hit for the given z-value. The distance of
this prediction to the actual position in x and
y is measured.

HelixWithIP

1.43

Checks if two hits are compatible with a helix
through the IP. A circle is calculated from the
two hits and the IP. Let « be the angle between
the center of the circle and two hits. For a per-
fect helix 1> should be equal for all pairs of hits
on the helix. The coefficients for the first and
last two hits (including the IP) are compared:
L /2. This is 1 for a perfect helix around

Az Azz:
the z-axis.

NoZigZag

2.30

A criterion to sort out tracks that make a zig
zag movement. The 2-D angles are measured
for the first and the last three hits. Then they
are transposed to the area of —7 to m and mul-
tiplied. A zig-zagging track would give angles
with different signs and therefore a negative
multiplication result.

2DAngleChange

2.30

The coefficient of the 2-D angles.

3DAngleChange

~

241

The coefficient of the 3-D angles.

ChangeRZRatio

1.23

The coefficient of the RZRatio values for the
two 2-hit-segments. Ideally this would equal 1.

PhiZRatioChange

2.50

The coefficient of the PhiZRatio of the first 3
and the last 3 hits.

2DAngle

1.23

The angle between two 2-hit-segments in the
z-y plane.

2DAngleTimesR

1.46

The 2DAngle, but multiplied with the radius
of the circle the segments form, in order to get
better values for low momentum tracks.

3DAngle

1.25

The angle between two 2-hit-segments.

3DAngleTimesR

w

1.48

3DAngle times the radius of the circle.

PT

1.30

The transversal momentum as calculated from
a circle in the z-y plane. This criterion includes
knowledge about the magnetic field and in this
way differs from the rest. A more basic version
would be to either use the radius of the circle or
its inverse (2. Using pr was chosen for reasons
of readability.




